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1. Background 
This paper discusses the concept of inverted dice sums.1 Even though the term inverted dice roll is sometimes 
used synonymously, it is a theoretical construction. No special dice or acrobatic ways of throwing dice are 
required. An inverted dice sum is a way of interpreting a roll of dice, and most often such roll is performed with 
normal six-faced dice, i.e., standard dice. A standard die is a cube with each of its sides marked with a unique 
number of dots (pips, points, spots) from ⚀ to ⚅, such that the sum of the dots on two opposite sides is seven.2 
The value of a die is the number of dots facing upwards after a roll. 

A regular dice sum is the sum of the values of all dice included in a roll, i.e., the sum of all values that are 
present in a roll. A roll with one single standard die produces a sum with only one addend, so the sum is either 
1, 2, 3, 4, 5, or 6. The dice sum in a roll with two standard dice (in short, the sum of two dice) ranges from 2 to 
12, where 7 is most likely to occur (with a probability of 1/6). 

In general, the sum of 𝑛𝑛 standard dice ranges from 𝑛𝑛 to 6𝑛𝑛, where ⌊7
2
𝑛𝑛⌋ is most likely to occur.3 

An inverted dice sum is the sum of all the values that are not present in a roll. This is not to be confused with the 
reversed value you get, when counting the dots on the sides facing downwards for one or more dice. 

Let 𝐷𝐷 = {1, 2, 3, 4, 5, 6} be the set of all possible dice values. For each roll, let 𝑆𝑆 be the set of unique shown 
values (i.e., distinct values that are present in the roll).4 The inverted sum is the sum of all elements in 𝐷𝐷 ∖ 𝑆𝑆. 

Since 1 + 2 + 3 + 4 + 5 + 6 = 21, an inverted dice sum can be calculated by subtracting all values in 𝑆𝑆 from 21. 
A set does not have duplicate elements, so we only subtract each unique value once. Let’s look at a few examples: 

Roll  Sum  Inverted sum  Explanation of the inverted sum 
⚁  2  𝟏𝟏𝟏𝟏  ⚀ + ⚂ + ⚃ + ⚄ + ⚅ is 𝟏𝟏𝟏𝟏. Also, 21 − ⚁ = 𝟏𝟏𝟏𝟏.5 
⚁ ⚁  4  𝟏𝟏𝟏𝟏  As above, ⚁ is the only value present, and 21 − 2 = 𝟏𝟏𝟏𝟏. 
⚁ ⚄  7  𝟏𝟏𝟏𝟏  ⚀ + ⚂ + ⚃ + ⚅ is 𝟏𝟏𝟏𝟏. Also, 21 − ⚁ − ⚄ = 𝟏𝟏𝟏𝟏. 
⚁ ⚄ ⚄  12  𝟏𝟏𝟏𝟏  As above, 2 and 5 are the only values in 𝑆𝑆, and 21 − 7 = 𝟏𝟏𝟏𝟏. 
⚁ ⚄ ⚅  13  𝟖𝟖  ⚀ + ⚂ + ⚃ is 𝟖𝟖. Also, 21 − 2 − 5 − 6 = 𝟖𝟖. 
⚀ ⚀ ⚀  3  𝟐𝟐𝟐𝟐  1 is the only value shown, and 21 − 1 = 𝟐𝟐𝟐𝟐. 
⚅ ⚅ ⚅  18  𝟏𝟏𝟏𝟏  6 is the only value shown, and 21 − 6 = 𝟏𝟏𝟏𝟏. 
⚀ ⚁ ⚁ ⚂  8  𝟏𝟏𝟏𝟏  ⚃ + ⚄ + ⚅ is 𝟏𝟏𝟏𝟏. Also, 21 − (1 + 2 + 3) = 𝟏𝟏𝟏𝟏. 
⚀ ⚁ ⚂ ⚃  10  𝟏𝟏𝟏𝟏  ⚄ + ⚅ is 𝟏𝟏𝟏𝟏. Also, 21 − (1 + 2 + 3 + 4) = 𝟏𝟏𝟏𝟏. 
⚁ ⚂ ⚃ ⚄ ⚅  20  𝟏𝟏  ⚀ is the only value not shown, so 𝐷𝐷 ∖ 𝑆𝑆 = {𝟏𝟏}. 
⚀ ⚁ ⚂ ⚃ ⚄  15  𝟔𝟔  𝟔𝟔 is the only value not shown. 
⚀ ⚀ ⚀ ⚀ ⚀  5  𝟐𝟐𝟐𝟐  ⚀ is the only value shown, and 21 − 1 = 𝟐𝟐𝟐𝟐. 
⚀ ⚀ ⚀ ⚀ ⚀ ⚀  6  𝟐𝟐𝟐𝟐  As above, 1 is the only value shown, and 21 − 1 = 𝟐𝟐𝟐𝟐. 
⚀ ⚁ ⚂ ⚃ ⚄ ⚅  21  𝟐𝟐  𝑆𝑆 = {1, 2, 3, 4, 5, 6}, so 𝐷𝐷 ∖ 𝑆𝑆 = ∅, and 21 − 21 = 𝟐𝟐. 
⚁ ⚂ ⚃ ⚄ ⚅ ⚅  26  𝟏𝟏  𝑆𝑆 = {2, 3, 4, 5, 6}, so 𝐷𝐷 ∖ 𝑆𝑆 = {𝟏𝟏}, and 21 − 20 = 𝟏𝟏. 

Table 1. Examples of dice rolls with their regular sums and inverted sums. 

 
1  For information about the game Inverted Dice™, see https://www.simonjensen.com/InvertedDice. It might be a good starting point. 
2  The concept of inverted dice sums works for all types of sequentially numbered 𝑓𝑓-faced dice, where 𝑓𝑓 > 1, regardless of their shape. 
  Various extensions of the concept can be made to deal with other types of dice. 
3  ⌊ ⌋ denote the floor function, so for even 𝑛𝑛, we get 7𝑛𝑛

2
. For odd 𝑛𝑛, we get 7𝑛𝑛−1

2
. See https://mathworld.wolfram.com/Dice.html for 

  more information about the probabilities involved here. 
4  A more formal definition of 𝑆𝑆 is given in section 2.5 of this paper. 
5  Strictly speaking, the dots themselves are not the value of a die. But it is pedagogical to associate ⚀ with 1, ⚁ with 2, and so on. 

https://www.simonjensen.com/texts/#mathematics
https://www.simonjensen.com/InvertedDice/
https://en.wikipedia.org/wiki/Dice
https://mathworld.wolfram.com/Dice.html
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As indicated in Table 1, an inverted dice sum does not depend on the number of dice the same way a regular 
sum does. For instance, both ⚄ ⚄ and ⚄ ⚄ ⚄ ⚄ ⚄ ⚄ has the inverted sum 16, since for both these 
rolls, 𝑆𝑆 equals {5}, so 𝐷𝐷 ∖ 𝑆𝑆 = {1, 2, 3, 4, 6}, which gives us the inverted sum 

� 𝑘𝑘
𝑘𝑘∈𝐷𝐷∖𝑆𝑆

= 1 + 2 + 3 + 4 + 6 = 16. 

However, the possible inverted sums depend on the number of dice, see Table 2 below. 

2. The six-faced case 
The discussion in this section concerns 6-faced (6-sided) dice. As before, let 𝑛𝑛 > 0 be the number of dice in a roll. 
Let 𝜎𝜎(𝑛𝑛) be the number of possible distinct regular sums and �̇�𝜎(𝑛𝑛) be the number of possible distinct inverted 
sums for each roll.6 

𝑛𝑛  Possible regular sums  𝜎𝜎(𝑛𝑛)  Possible inverted sums  �̇�𝜎(𝑛𝑛) 
1  1 to 6  6  15 to 20  6 
2  2 to 12  11  10 to 20  11 
3  3 to 18  16  6 to 20  15 
4  4 to 24  21  3 to 20  18 
5  5 to 30  26  1 to 20  20 

𝒏𝒏 > 𝟏𝟏  𝒏𝒏 to 𝟔𝟔𝒏𝒏  𝟏𝟏𝒏𝒏 + 𝟏𝟏  𝟐𝟐 to 𝟐𝟐𝟐𝟐  𝟐𝟐𝟏𝟏 
Table 2. Possible distinct regular sums and distinct inverted sums of 𝑛𝑛 six-faced dice. 

For rolls with 𝑛𝑛 dice, the number of possible inverted sums is given by 

�̇�𝜎(𝑛𝑛) = �𝑘𝑘 ⋅ [𝑛𝑛 + 𝑘𝑘 > 6]
6

𝑘𝑘=1

 

which is 21 for all 𝑛𝑛 ≥ 6, while the number of possible regular sums is given by 𝜎𝜎(𝑛𝑛) = 5𝑛𝑛 + 1 which has no 
upper bound as 𝑛𝑛 increases.7 Inverted sums of 𝑛𝑛 dice are ranging from 21 − �̇�𝜎(𝑛𝑛) to 20 (regular sums are 
ranging from 𝑛𝑛 to 6𝑛𝑛, as mentioned earlier). If (and only if) 𝑛𝑛 = 1 or 𝑛𝑛 = 2, we have �̇�𝜎(𝑛𝑛) = 𝜎𝜎(𝑛𝑛). 

Again, let 𝐷𝐷 = {1, 2, 3, 4, 5, 6} be the set of possible dice values. Let 𝑅𝑅 be a multiset representing each distinct 
roll and let 𝑆𝑆 = 𝑅𝑅 ∩ 𝐷𝐷 be the set of distinct shown values in each roll (as before). In other words, 𝑆𝑆 is the 
support of 𝑅𝑅 in the universe 𝐷𝐷 and the cardinality of 𝑅𝑅 is 𝑛𝑛.8 Neither 𝑅𝑅 nor 𝑆𝑆 can be empty. Elements of 𝑅𝑅 are 
listed in non-decreasing order, occasionally with the dice notation introduced above. As an example, the roll 
⚅ ⚁ ⚄ ⚁ is expressed as 𝑅𝑅 = {2, 2, 5, 6} = ⚁ ⚁ ⚄ ⚅. Brackets are omitted when using dice symbols. 

Let Σ(𝑅𝑅) be the regular sum and let Σ̇(𝑅𝑅) be the inverted sum for each roll 𝑅𝑅. Then, we have the trivial identities 
Σ̇(𝑅𝑅) = Σ̇(𝑆𝑆) = Σ(𝐷𝐷 ∖ 𝑆𝑆) = Σ(𝐷𝐷)− Σ(𝑆𝑆) = 21 − Σ(𝑆𝑆). 

The intersection of the images of the functions Σ̇ and Σ is empty when 𝑛𝑛 = 1 or 𝑛𝑛 > 20, since Σ̇(𝑅𝑅) ≤ 20 and 
Σ(𝑅𝑅) ≥ 𝑛𝑛 for all 𝑅𝑅, and 𝑛𝑛 = 1 is a special case. In other words, for 𝑛𝑛 = 2, 3, …, 20, there exist rolls 𝑅𝑅1 and 𝑅𝑅2 
such that Σ̇(𝑅𝑅1) =  Σ(𝑅𝑅2) = 𝑥𝑥, where 𝑛𝑛 ≤ 𝑥𝑥 ≤ 20. In fact, for 𝑛𝑛 ∈ {2, 3}, we have 21 − �̇�𝜎(𝑛𝑛) ≤ 𝑥𝑥 ≤ 20. 
For instance, with the rolls 𝑅𝑅1 = ⚃ ⚄ ⚅ and 𝑅𝑅2 = ⚁ ⚁ ⚁ we have Σ̇(𝑅𝑅1) =  Σ(𝑅𝑅2) = 6 = 21 − �̇�𝜎(3). 

The probability of a roll of 𝑛𝑛 dice resulting in a particular regular sum 𝑥𝑥 is notated as Pr(𝑛𝑛, Σ(𝑅𝑅) = 𝑥𝑥), and the 
probability of an inverted sum 𝑥𝑥 is notated as Pr(𝑛𝑛, Σ̇(𝑅𝑅) = 𝑥𝑥). As an example, Pr�5, Σ̇(𝑅𝑅) = 18� = 31

7776
. 

In other words, out of the 7776 possible outcomes of a roll with 5 dice, there are 31 with the inverted sum 18.9 

For the regular sum probabilities, and with the notation introduced above, we have the trivial identities 
Pr(𝑛𝑛, Σ(𝑅𝑅) < 𝑛𝑛) = 0, Pr(𝑛𝑛, Σ(𝑅𝑅) > 6𝑛𝑛) = 0, and Pr(𝑛𝑛, Σ(𝑅𝑅) = 𝑛𝑛) = Pr(𝑛𝑛, Σ(𝑅𝑅) = 6𝑛𝑛) = 1

6𝑛𝑛
. 

 
6  The overdot used in �̇�𝜎 should not be confused with the usage of that diacritic in other texts. It has nothing to do with derivatives. 
7  [ ] is the Iverson bracket. Mixing algebraic and logical expressions like this might seem unnecessarily unorthodox at first sight, but 
  in combination with the sigma notation, this approach has strong benefits. 
8  See https://en.wikipedia.org/wiki/Multiset for an explanation of the terminology used here. 
9  Those 31 possible outcomes correspond to the situations where the multiset 𝑅𝑅 equals {1, 1, 1, 1, 2} or {1, 1, 1, 2, 2} or {1, 1, 2, 2, 2} 
  or {1, 2, 2, 2, 2} or {3, 3, 3, 3, 3}. This means that 𝑆𝑆 is either {1, 2} or {3}. See section 2.5 in this paper for more examples with 𝑛𝑛 = 5. 

https://en.wikipedia.org/wiki/Iverson_bracket
https://en.wikipedia.org/wiki/Summation
https://en.wikipedia.org/wiki/Multiset
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For the inverted sum probabilities, we have Pr�𝑛𝑛, Σ̇(𝑅𝑅) < 21 − �̇�𝜎(𝑛𝑛)� = 0, Pr�𝑛𝑛, Σ̇(𝑅𝑅) > 20� = 0, and 
Pr�𝑛𝑛, Σ̇(𝑅𝑅) = 19� = Pr�𝑛𝑛, Σ̇(𝑅𝑅) = 20� = 1

6𝑛𝑛
 (inverted sums 19 and 20 have the same probability). In general, 

if all 𝑛𝑛 dice in a roll have the same value, then 𝑆𝑆 = {𝑑𝑑} for some 𝑑𝑑 ∈ 𝐷𝐷 (and |𝑆𝑆| = 1). If 𝑑𝑑 equals 1, then 
Σ̇(𝑅𝑅) = 20. If 𝑑𝑑 equals 2, then Σ̇(𝑅𝑅) = 19. 

If the multiplicity of all elements in the multiset 𝑅𝑅 equals 1, then 𝑆𝑆 = 𝑅𝑅, and thus Σ̇(𝑅𝑅) = 21 − Σ(𝑅𝑅).10 This is 
always the case when 𝑛𝑛 = 1. Hence, inverted dice rolls with a single die are mathematically uninteresting. 
Nevertheless, let’s have a look at this trivial situation, for completeness if nothing else. 

2.1. Rolls with one die 
When 𝑛𝑛 = 1, 𝑅𝑅 ∈ {{1}, {2}, {3}, {4}, {5}, {6}} and Pr�1, Σ̇(𝑅𝑅) = 𝑥𝑥� = 1

6
 for all 𝑥𝑥 ∈ {15, 16, 17, 18, 19, 20}. 

There is a one-to-one correspondence between the inverted sums and the regular sums, which doesn’t give rise 
to any interesting mathematical questions (after all, sums with only a single addend are trivial). The equation 
Σ̇(𝑅𝑅) = Σ(𝑅𝑅) does not have any solutions since the intersection of the images of the functions Σ̇ and Σ is empty.11 
Furthermore, Σ̇(𝑅𝑅) + Σ(𝑅𝑅) is always 21, so that is boring as well. 

It would require some creative thinking to come up with any applicative situations at all for inverted sums of a 
single die. Maybe there are some fun games yet to be invented. For instance, players could take turns rolling a 
die with the goal of reaching 21 (or some other constant), both starting with 0 points. After each roll, the player 
chooses whether to use the shown value or the inverted value. If the regular value is chosen it is added to the 
player’s points. If the inverted value is chosen, it is subtracted from the points (maybe only if the player has 
more points than what is required to win, otherwise added). The player who lands on 21 points using the lowest 
number of rolls wins the game. Modifications are needed, but this principle can be used in several types of 
games, including board games where a token is moved in a certain direction. 

A single die has an even probability distribution. Since this distribution is not affected by subtracting the dice 
value from a constant (21 in this case), there is not really any reason to do so. Inverted dice rolls become much 
more interesting with multiple dice. 

2.2. Rolls with two dice 
Let us start with a table of the 36 possible outcomes of a roll with two dice. The rolls in the 15 red rows are 
duplicates of rolls displayed elsewhere in the table. Thus, the table contains 21 distinct rolls. The rolls in the 6 
blue rows are special cases where 𝑆𝑆 ≠ 𝑅𝑅 (since |𝑆𝑆| = 1 and |𝑅𝑅| = 2), which means that Σ̇(𝑅𝑅) ≠ 21 − Σ(𝑅𝑅). 

𝑅𝑅  Σ(𝑅𝑅)  Σ̇(𝑅𝑅)  𝑅𝑅  Σ(𝑅𝑅)  Σ̇(𝑅𝑅)  𝑅𝑅  Σ(𝑅𝑅)  Σ̇(𝑅𝑅) 
⚀ ⚀  2  20  ⚂ ⚀  4  17  ⚄ ⚀  6  15 
⚀ ⚁  3  18  ⚂ ⚁  5  16  ⚄ ⚁  7  14 

⚀ ⚂  4  17  ⚂ ⚂  6  18  ⚄ ⚂  8  13 

⚀ ⚃  5  16  ⚂ ⚃  7  14  ⚄ ⚃  9  12 

⚀ ⚄  6  15  ⚂ ⚄  8  13  ⚄ ⚄  10  16 
⚀ ⚅  7  14  ⚂ ⚅  9  12  ⚄ ⚅  11  10 
⚁ ⚀  3  18  ⚃ ⚀  5  16  ⚅ ⚀  7  14 
⚁ ⚁  4  19  ⚃ ⚁  6  15  ⚅ ⚁  8  13 
⚁ ⚂  5  16  ⚃ ⚂  7  14  ⚅ ⚂  9  12 
⚁ ⚃  6  15  ⚃ ⚃  8  17  ⚅ ⚃  10  11 
⚁ ⚄  7  14  ⚃ ⚄  9  12  ⚅ ⚄  11  10 
⚁ ⚅  8  13  ⚃ ⚅  10  11  ⚅ ⚅  12  15 

Table 3. The 36 possible outcomes of a two-dice roll with corresponding dice sums and inverted dice sums. 

 
10  Since 𝑅𝑅 is a multiset and 𝑆𝑆 is a set, equality should be defined. Here, 𝑆𝑆 = 𝑅𝑅 is equivalent to the existence of a bijection between the 
  elements in 𝑆𝑆 and 𝑅𝑅, such that |𝑆𝑆| = |𝑅𝑅| and ∀𝑑𝑑(𝑑𝑑 ∈ 𝑆𝑆 ⇔ 𝑑𝑑 ∈ 𝑅𝑅). 
11  Solving the equation Σ̇(𝑅𝑅) = Σ(𝑅𝑅) means finding all distinct rolls 𝑅𝑅 with the property that their regular sum is the same as their 
  inverted sum. We’ll get back to that problem in the following sections of this paper. 
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From Table 3, we can easily construct the probability tables for both the sum and the inverted sum (see Table 4). 
As mentioned earlier, �̇�𝜎(2) = 𝜎𝜎(2), so the number of rows is the same (i.e., 11) for these probability tables. 
This makes the case 𝑛𝑛 = 2 interesting. 

The intersection of the images of the functions Σ̇ and Σ is {10, 11, 12}, marked in blue below. The equation 
Σ̇(𝑅𝑅) = Σ(𝑅𝑅) does not have any solutions, since the distinct rolls with regular sums 10, 11, and 12, differs from 
the distinct rolls with inverted sums 10, 11, and 12, respectively, as seen in Table 3. 

𝑥𝑥  Pr(2, Σ(𝑅𝑅) = 𝑥𝑥)  𝑥𝑥  Pr(2, Σ̇(𝑅𝑅) = 𝑥𝑥) 
2  1/36  10  2/36 
3  2/36  11  2/36 
4  3/36  12  4/36 
5  4/36  13  4/36 
6  5/36  14  6/36 
7  6/36  15  5/36 
8  5/36  16  5/36 
9  4/36  17  3/36 

10  3/36  18  3/36 
11  2/36  19  1/36 
12  1/36  20  1/36 

Table 4. Possible values (𝑥𝑥) for the sum and the inverted sum of a two-dice roll, with corresponding probabilities. 

The table above shows us that the probability distribution for inverted dice sums differs from that of regular dice 
sums. The two largest inverted sums (19 and 20) are least likely to occur, and 14 is the inverted sum most 
likely to occur (with the same probability as the regular sum 7).  

This can be used in several ways when it comes to dice games. For example, try playing Monopoly with 
inverted dice sums instead of regular dice sums (or add the possibility of players using inverted dice sums in 
certain situations). Inverted dice rolls with two dice can also be the foundation of new dice games, as discussed 
briefly in the previous section. 

For 𝑛𝑛 = 2, the probability of rolling the regular sum 11 and the inverted sum 11 is the same (2/36). Table 4 
shows that 𝑥𝑥 = 11 is the only solution to Pr(2, Σ(𝑅𝑅) = 𝑥𝑥) = Pr(2, Σ̇(𝑅𝑅) = 𝑥𝑥). In fact, there are no other solutions 
to Pr(𝑛𝑛, Σ(𝑅𝑅) = 𝑥𝑥) = Pr(𝑛𝑛, Σ̇(𝑅𝑅) = 𝑥𝑥) for all 𝑛𝑛, except the trivial 𝑥𝑥 = 19 for 𝑛𝑛 = 19 and 𝑥𝑥 = 20 for 𝑛𝑛 = 20. 

Lastly, it is worth mentioning that we can use the concept of inverted sums to define simple rules that allow us 
to interpret a roll of two dice in new ways. Below is an example of such rule (denoted Φ). It ranges from 3 to 
20, i.e., it produces 18 sequential values instead of the 11 values we normally have for a sum of two dice. 
The rule Φ has an entertaining probability distribution, since both Pr(2,Φ(𝑅𝑅) = 5) and Pr(2,Φ(𝑅𝑅) = 7) are 
larger than Pr(2,Φ(𝑅𝑅) = 6). I leave it to the reader to construct the probability table for Φ. 

𝚽𝚽: If the two dice have different values and none of them is ⚄, use the sum. Otherwise, use the inverted sum. 

The table below shows all 21 distinct rolls and their values according to the rule Φ defined above. The blue 
rows indicate that Φ(𝑅𝑅) = Σ̇(𝑅𝑅). For all other rows, we have Φ(𝑅𝑅) = Σ(𝑅𝑅). 

𝑅𝑅  Φ(𝑅𝑅)  𝑅𝑅  Φ(𝑅𝑅)  𝑅𝑅  Φ(𝑅𝑅) 
⚀ ⚀  20  ⚁ ⚂  5  ⚂ ⚅  9 
⚀ ⚁  3  ⚁ ⚃  6  ⚃ ⚃  17 

⚀ ⚂  4  ⚁ ⚄  14  ⚃ ⚄  12 

⚀ ⚃  5  ⚁ ⚅  8  ⚃ ⚅  11 

⚀ ⚄  15  ⚂ ⚂  18  ⚄ ⚄  16 
⚀ ⚅  7  ⚂ ⚃  7  ⚄ ⚅  10 
⚁ ⚁  19  ⚂ ⚄  13  ⚅ ⚅  15 

Table 5. Distinct 2-dice rolls and their results according to the rule Φ defined above. 
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We can define all kinds of peculiar rules. The rule stated below always result in an even number between 2 and 18. 

𝛀𝛀: If the sum of the two dice is even, use the sum. Otherwise, use the inverted sum. 

𝑅𝑅  Ω(𝑅𝑅)  𝑅𝑅  Ω(𝑅𝑅)  𝑅𝑅  Ω(𝑅𝑅) 
⚀ ⚀  2  ⚁ ⚂  16  ⚂ ⚅  12 
⚀ ⚁  18  ⚁ ⚃  6  ⚃ ⚃  8 

⚀ ⚂  4  ⚁ ⚄  14  ⚃ ⚄  12 

⚀ ⚃  16  ⚁ ⚅  8  ⚃ ⚅  10 

⚀ ⚄  6  ⚂ ⚂  6  ⚄ ⚄  10 
⚀ ⚅  14  ⚂ ⚃  14  ⚄ ⚅  10 
⚁ ⚁  4  ⚂ ⚄  8  ⚅ ⚅  12 

Table 6. Distinct 2-dice rolls and their results according to the rule Ω defined above. 

2.3. Rolls with three dice 
With 𝑛𝑛 = 3, the situation is more interesting. First of all, we have 16 possible regular sums (ranging from 3 to 
18) but only 15 possible inverted sums (ranging from 6 to 20), so �̇�𝜎(3) ≠ 𝜎𝜎(3). 

Secondly, among all possible rolls with 3 dice, we have a new kind of rolls, namely rolls where 1 < |𝑆𝑆| < |𝑅𝑅|, 
i.e., rolls where some element in the multiset R have a multiplicity larger than 1 without all elements being the 
same, which is impossible for 𝑛𝑛 = 1 and 𝑛𝑛 = 2. Two examples are 𝑅𝑅1 = ⚀ ⚀ ⚁ and 𝑅𝑅2 = ⚀ ⚁ ⚁. 
We see that Σ̇(𝑅𝑅1) = Σ̇(𝑅𝑅2), but Σ(𝑅𝑅1) ≠ Σ(𝑅𝑅2), and it is easy to see that for all such rolls, Σ̇(𝑅𝑅) ≠ 21 − Σ(𝑅𝑅). 

When 𝑛𝑛 = 3 and 1 < |𝑆𝑆| < |𝑅𝑅|, the set 𝑆𝑆 corresponds to 2 distinct rolls (for |𝑆𝑆| = 1 or |𝑆𝑆| = |𝑅𝑅|, the set 𝑆𝑆 
corresponds to 1 distinct roll). With three dice, we have 41 possible versions of the set 𝑆𝑆, all listed in the table 
below, together with the distinct rolls that give us each value of 𝑆𝑆 and the inverted sum for these rolls, Σ̇(𝑅𝑅). 

𝑆𝑆  𝑅𝑅  Σ̇(𝑅𝑅)  𝑆𝑆  𝑅𝑅  Σ̇(𝑅𝑅)  𝑆𝑆  R  Σ̇(𝑅𝑅) 
⚀ ⚁ ⚂  ⚀ ⚁ ⚂  15  ⚀ ⚁  ⚀ ⚀ ⚁ or ⚀ ⚁ ⚁  18  ⚀  ⚀ ⚀ ⚀  20 
⚀ ⚁ ⚃  ⚀ ⚁ ⚃  14  ⚀ ⚂  ⚀ ⚀ ⚂ or ⚀ ⚂ ⚂  17  ⚁  ⚁ ⚁ ⚁  19 

⚀ ⚁ ⚄  ⚀ ⚁ ⚄  13  ⚀ ⚃  ⚀ ⚀ ⚃ or ⚀ ⚃ ⚃  16  ⚂  ⚂ ⚂ ⚂  18 

⚀ ⚁ ⚅  ⚀ ⚁ ⚅  12  ⚀ ⚄  ⚀ ⚀ ⚄ or ⚀ ⚄ ⚄  15  ⚃  ⚃ ⚃ ⚃  17 

⚀ ⚂ ⚃  ⚀ ⚂ ⚃  13  ⚀ ⚅  ⚀ ⚀ ⚅ or ⚀ ⚅ ⚅  14  ⚄  ⚄ ⚄ ⚄  16 
⚀ ⚂ ⚄  ⚀ ⚂ ⚄  12  ⚁ ⚂  ⚁ ⚁ ⚂ or ⚁ ⚂ ⚂  16  ⚅  ⚅ ⚅ ⚅  15 
⚀ ⚂ ⚅  ⚀ ⚂ ⚅  11  ⚁ ⚃  ⚁ ⚁ ⚃ or ⚁ ⚃ ⚃  15       
⚀ ⚃ ⚄  ⚀ ⚃ ⚄  11  ⚁ ⚄  ⚁ ⚁ ⚄ or ⚁ ⚄ ⚄  14       
⚀ ⚃ ⚅  ⚀ ⚃ ⚅  10  ⚁ ⚅  ⚁ ⚁ ⚅ or ⚁ ⚅ ⚅  13       
⚀ ⚄ ⚅  ⚀ ⚄ ⚅  9  ⚂ ⚃  ⚂ ⚂ ⚃ or ⚂ ⚃ ⚃  14       
⚁ ⚂ ⚃  ⚁ ⚂ ⚃  12  ⚂ ⚄  ⚂ ⚂ ⚄ or ⚂ ⚄ ⚄  13       
⚁ ⚂ ⚄  ⚁ ⚂ ⚄  11  ⚂ ⚅  ⚂ ⚂ ⚅ or ⚂ ⚅ ⚅  12       
⚁ ⚂ ⚅  ⚁ ⚂ ⚅  9  ⚃ ⚄  ⚃ ⚃ ⚄ or ⚃ ⚄ ⚄  12       
⚁ ⚃ ⚄  ⚁ ⚃ ⚄  10  ⚃ ⚅  ⚃ ⚃ ⚅ or ⚃ ⚅ ⚅  11       
⚁ ⚃ ⚅  ⚁ ⚃ ⚅  9  ⚄ ⚅  ⚄ ⚄ ⚅ or ⚄ ⚅ ⚅  10       
⚁ ⚄ ⚅  ⚁ ⚄ ⚅  8             
⚂ ⚃ ⚄  ⚂ ⚃ ⚄  9             
⚂ ⚃ ⚅  ⚂ ⚃ ⚅  8             
⚂ ⚄ ⚅  ⚂ ⚄ ⚅  7             
⚃ ⚄ ⚅  ⚃ ⚄ ⚅  6             

Table 7. Possible values of the set 𝑆𝑆 for 3-dice rolls, the corresponding rolls, and Σ̇(𝑅𝑅) for these rolls. 
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The rolls 𝑅𝑅 = ⚂ ⚂ ⚅ and 𝑅𝑅 = ⚂ ⚄ ⚄ marked in blue in the table above are solutions to the equation 
Σ̇(𝑅𝑅) = Σ(𝑅𝑅) mentioned earlier because the sum equals the inverted sum for these two rolls.12 

Let’s have a look at the probability table for rolls with three dice. The intersection of the images of the functions 
Σ̇ and Σ is {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}, marked in blue below. 

𝑥𝑥  Pr(3, Σ(𝑅𝑅) = 𝑥𝑥)  𝑥𝑥  Pr(3, Σ̇(𝑅𝑅) = 𝑥𝑥) 
3  1/216  6  6/216 
4  3/216  7  6/216 
5  6/216  8  12/216 
6  10/216  9  18/216 
7  15/216  10  24/216 
8  21/216  11  24/216 
9  25/216  12  30/216 

10  27/216  13  24/216 
11  27/216  14  24/216 
12  25/216  15  19/216 
13  21/216  16  13/216 
14  15/216  17  7/216 
15  10/216  18  7/216 
16  6/216  19  1/216 
17  3/216  20  1/216 
18  1/216     
Table 8. Possible sums and inverted sums of a three-dice roll, with corresponding probabilities. 

The table above shows us that the inverted sum most likely to occur is 12 (with a probability higher than that of 
any regular sum). As always with 6-sided dice, 19 and 20 are least likely to occur. 

It is worth noticing that Pr(3, Σ̇(𝑅𝑅)) has a near-symmetric nature around the value 12, since Pr�3, Σ̇(𝑅𝑅) = 12 − 𝑎𝑎� 
equals Pr�3, Σ̇(𝑅𝑅) = 12 + 𝑎𝑎� for 𝑎𝑎 ∈ {1, 2} and Pr�3, Σ̇(𝑅𝑅) = 12 + 𝑎𝑎� − 1 for 𝑎𝑎 ∈ {3, 4, 5, 6}. 

When 𝑛𝑛 < 3, for all 𝑥𝑥 there are some 𝑦𝑦, such that Pr(𝑛𝑛, Σ(𝑅𝑅) = 𝑦𝑦) = Pr�𝑛𝑛, Σ̇(𝑅𝑅) = 𝑥𝑥�. When 𝑛𝑛 = 3, we see 
that Pr(3, Σ(𝑅𝑅) = 3) = Pr(3, Σ(𝑅𝑅) = 18) = Pr�3, Σ̇(𝑅𝑅) = 19� = Pr�3, Σ̇(𝑅𝑅) = 20� = 1/216, and 
Pr(3, Σ(𝑅𝑅) = 5) = Pr(3, Σ(𝑅𝑅) = 16) = Pr�3, Σ̇(𝑅𝑅) = 6� = Pr�3, Σ̇(𝑅𝑅) = 7� = 6/216. For 𝑥𝑥 ∉ {6, 7, 19, 20}, 
there are no values 𝑦𝑦, such that Pr(3,Σ(𝑅𝑅) = 𝑦𝑦) = Pr�3, Σ̇(𝑅𝑅) = 𝑥𝑥�, with the impossible situations 𝑦𝑦 < 3, 
𝑦𝑦 > 18, 𝑥𝑥 < 6, and 𝑥𝑥 > 20 as only exceptions. 

It might be worth noticing that the probability of the regular sum being odd is 12/24, while for the inverted sum 
we have Pr(3, Σ̇(𝑅𝑅) is odd) = 11/24. Also, Pr(3, Σ(𝑅𝑅) is prime) ≈ 33.8%, while Pr(3, Σ̇(𝑅𝑅) is prime) ≈ 28.7%. 

The concept of inverted sums can be used when creating new ways to interpret 3-dice rolls, as we did in the 2-dice 
case (the rules Φ and Ω in the previous section). As an example, let Δ be a rule stating that the result of a roll of 
three dice (𝑅𝑅) is the difference between the regular and the inverted sum, i.e., Δ(𝑅𝑅) = �Σ(𝑅𝑅) − Σ̇(𝑅𝑅)�. Then, the 
image of Δ is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17}, which means Δ(𝑅𝑅) can never be 11, 15 or 16. 

Another example is the rule Σ+Σ̇ defined to give us the sum of the regular sum and the inverted sum. The image 
of Σ+Σ̇ is {21, 22, 23, 24, 25, 26, 27, 29, 31, 33}, which means (Σ+Σ̇)(𝑅𝑅) can never be 28, 30 or 32. 

When applied on 3-dice rolls, the rule Ω (from the previous section) has the image {4, 6, 8, 10, 12, 13, 14, 15, 
16, 17, 18, 20}. We see that it needs modification if we still want it only to give us even results. 

It is an open problem to find a rule that always gives us a prime number. Table 7 is helpful when pursuing this. 

 
12  Since 𝑅𝑅 is a multiset and multisets are unordered, multiple outcomes of a 𝑛𝑛-dice roll correspond to the same 𝑅𝑅, except for rolls on 
  the form 𝑅𝑅 = {𝑑𝑑𝑛𝑛}, where 𝑑𝑑𝑛𝑛 is shorthand for a single element 𝑑𝑑 ∈ 𝐷𝐷 with the multiplicity 𝑛𝑛. For instance, the outcomes 
  ⚄ ⚂ ⚄ and ⚄ ⚄ ⚂ are included in 𝑅𝑅 = ⚂ ⚄ ⚄ above. See section 2.5 for further discussion about this. 
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Using inverted sums of rolls with three dice can be useful in games. For instance, it is possible to play the game 
Inverted Dice™ with three dice (instead of five) by removing the top bonus section from the game. 
Maximum points, 295 (instead of 360), is much easier to achieve in this “light version” of the game. Try it! 

2.4. Rolls with four dice 
The case 𝑛𝑛 = 4 is the first case where the lowest possible inverted sum (i.e., 3) is smaller than the lowest possible 
regular sum (i.e., 4), and the highest possible inverted sum (i.e., 20) is smaller than the highest possible regular 
sum (i.e., 24), see Table 2. We have 64 = 1296 different outcomes of a roll with 4 dice. For each roll, 𝑅𝑅 is one 
of 126 possible multisets (i.e., there are 126 distinct rolls), and 𝑆𝑆 is one of 56 possible supporting sets for 𝑅𝑅. 

Let us look at the probabilities. With four dice, the most likely inverted sum to occur is 9, as seen in the table 
below. The intersection of the images of the functions Σ̇ and Σ is marked in blue, as in earlier tables. 

𝑥𝑥  Pr(4, Σ(𝑅𝑅) = 𝑥𝑥)  𝑥𝑥  Pr(4, Σ̇(𝑅𝑅) = 𝑥𝑥) 
4  1/1296 ≈ 0.08%  3  24/1296 ≈ 1.85% 
5  4/1296 ≈ 0.31%  4  24/1296 ≈ 1.85% 
6  10/1296 ≈ 0.77%  5  48/1296 ≈ 3.70% 
7  20/1296 ≈ 1.54%  6  84/1296 ≈ 6.48% 
8  35/1296 ≈ 2.70%  7  108/1296 ≈ 8.33% 
9  56/1296 ≈ 4.32%  8  120/1296 ≈ 9.26% 

10  80/1296 ≈ 6.17%  9  156/1296 ≈ 12.04% 
11  104/1296 ≈ 8.02%  10  146/1296 ≈ 11.27% 
12  125/1296 ≈ 9.65%  11  146/1296 ≈ 11.27% 
13  140/1296 ≈ 10.80%  12  136/1296 ≈ 10.49% 
14  146/1296 ≈ 11.27%  13  100/1296 ≈ 7.72% 
15  140/1296 ≈ 10.80%  14  78/1296 ≈ 6.02% 
16  125/1296 ≈ 9.65%  15  65/1296 ≈ 5.02% 
17  104/1296 ≈ 8.02%  16  29/1296 ≈ 2.24% 
18  80/1296 ≈ 6.17%  17  15/1296 ≈ 1.16% 
19  56/1296 ≈ 4.32%  18  15/1296 ≈ 1.16% 
20  35/1296 ≈ 2.70%  19  1/1296 ≈ 0.08% 
21  20/1296 ≈ 1.54%  20  1/1296 ≈ 0.08% 
22  10/1296 ≈ 0.77%     
23  4/1296 ≈ 0.31%     
24  1/1296 ≈ 0.08%     
Table 9. Possible regular and inverted sums of a four-dice roll, with corresponding probabilities. 

The table shows that Pr(4, Σ(𝑅𝑅) = 14) = Pr�4, Σ̇(𝑅𝑅) = 10� = Pr�4, Σ̇(𝑅𝑅) = 11�, while for 𝑦𝑦 ≠ 14, there are 
no 𝑥𝑥, such that Pr(4, Σ(𝑅𝑅) = 𝑦𝑦) = Pr�4, Σ̇(𝑅𝑅) = 𝑥𝑥�. 

It’s a fun fact that the probability of getting a regular sum that is a prime number is exactly 1/3, and the 
probability of the regular sum being odd is exactly 1/2. For the inverted sum, Pr(4, Σ̇(𝑅𝑅) is odd) ≈ 51.1% and 
Pr(4, Σ̇(𝑅𝑅) is prime) ≈ 34.1%, which is not very exciting. 

Of more interest is the fact that the equation Σ̇(𝑅𝑅) = Σ(𝑅𝑅) has 8 solutions for 𝑛𝑛 = 4: 
𝑅𝑅 ∈ {{1, 2, 52}, {12, 3, 6}, {12, 4, 5}, {2, 32, 4}, {22, 52}, {1, 32, 5}, {12, 62}, {32, 42}}, where the upper indices 
represent the multiplicities greater than 1. In the next section, we’ll see that there are fewer solutions when 𝑛𝑛 = 5. 

2.5. Rolls with five dice 
This case is perhaps the most beautiful, because with 5 dice we have exactly 20 possible inverted sums, and 
they range from 1 to 20. In other words, five 6-sided dice can together form one 20-sided die (with an unusual 
probability distribution). This is the foundation of the game Inverted Dice™. Other games are yet to be invented. 

So far, we have been using the concept of distinct rolls a bit loosely, and the set 𝑆𝑆 also needs further 
clarification. Let us define these terms properly before we continue our presentation of the case 𝑛𝑛 = 5. 

https://www.simonjensen.com/InvertedDice/
https://www.simonjensen.com/InvertedDice/
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An outcome of a roll of 𝑛𝑛 dice is a sequence of length 𝑛𝑛, with elements (dice values) 𝑑𝑑𝑘𝑘 ∈ 𝐷𝐷, for 𝑘𝑘 = 1, 2, …, 𝑛𝑛.13 
Let 𝒪𝒪6,𝑛𝑛 be the set of all possible outcomes of a roll with 𝑛𝑛 dice (6-faced). Then, �𝒪𝒪6,𝑛𝑛� = 6𝑛𝑛. It is easy to see, 
that 𝒪𝒪6,𝑛𝑛 is also the set of all possible outcomes of 𝑛𝑛 rolls of one die. If we roll one die five times, we get a 
sequence (𝑑𝑑1, 𝑑𝑑2, 𝑑𝑑3, 𝑑𝑑4, 𝑑𝑑5). Since the five values 𝑑𝑑𝑖𝑖 are generated separately, it is easy to keep track of them. 
But if you roll five dice one time (in short, a roll of 5 dice or a 5-dice roll), there is no way for us to distinguish 
outcomes such as ⚀ ⚀ ⚀ ⚀ ⚅ and ⚀ ⚀ ⚅ ⚀ ⚀. Hence, we need the concept of distinct rolls. 

Let ℛ6,𝑛𝑛 be the set of all possible multisets of cardinality 𝑛𝑛 with elements taken from the 6 dice values in 𝐷𝐷. 
Then each element in ℛ6,𝑛𝑛 is called a distinct roll of 𝑛𝑛 dice (6-faced). Each such roll 𝑅𝑅 ∈ ℛ6,𝑛𝑛 is given by 
𝑅𝑅 = {1𝑚𝑚1, 2𝑚𝑚2, …, 6𝑚𝑚6}, where 0 ≤ 𝑚𝑚𝑘𝑘 ≤ 𝑛𝑛 (for 𝑘𝑘 = 1, 2, …, 6) are the multiplicities, whose sum is 𝑛𝑛.14 
For each outcome 𝑂𝑂 ∈ 𝒪𝒪6,𝑛𝑛, there is exactly one distinct roll 𝑅𝑅 ∈ ℛ6,𝑛𝑛 such that all elements 𝑑𝑑𝑘𝑘 in 𝑅𝑅 with 
multiplicity 𝑚𝑚𝑘𝑘 appear as terms in 𝑂𝑂 exactly 𝑚𝑚𝑘𝑘 times.15 Thus, 𝑅𝑅 can be defined as a function 𝑅𝑅: 𝒪𝒪6,𝑛𝑛 ⟶ ℛ6,𝑛𝑛. 
There are �𝒪𝒪6,5� = 65 = 7776 different outcomes of a roll with 5 dice, but only �ℛ6,5� = 252 distinct rolls.16 

We have 62 possible sets 𝑆𝑆, all shown in the table below (sorted by Σ̇(𝑆𝑆) in ascending order). For each 𝑆𝑆, the 
table also contains the inverted sum and the number of distinct 5-dice rolls (multisets with cardinality 5) for 
which 𝑆𝑆 is the support. That number is denoted 𝑟𝑟𝑆𝑆 below. In other words, 𝑟𝑟𝑆𝑆 = ��𝑅𝑅 ∈ ℛ6,5 ∶ Supp(𝑅𝑅) = 𝑆𝑆��. 

𝑆𝑆  𝑟𝑟𝑆𝑆  Σ̇(𝑆𝑆)  𝑆𝑆  𝑟𝑟𝑆𝑆  Σ̇(𝑆𝑆)  𝑆𝑆  𝑟𝑟𝑆𝑆  Σ̇(𝑆𝑆) 
⚁ ⚂ ⚃ ⚄ ⚅  1  1  ⚀ ⚁ ⚂ ⚅  4  9  ⚀ ⚂ ⚃  6  13 
⚀ ⚂ ⚃ ⚄ ⚅  1  2  ⚀ ⚁ ⚃ ⚄  4  9  ⚁ ⚅  4  13 
⚀ ⚁ ⚃ ⚄ ⚅  1  3  ⚀ ⚄ ⚅  6  9  ⚂ ⚄  4  13 

⚂ ⚃ ⚄ ⚅  4  3  ⚁ ⚃ ⚅  6  9  ⚀ ⚁ ⚃  6  14 
⚀ ⚁ ⚂ ⚄ ⚅  1  4  ⚂ ⚃ ⚄  6  9  ⚀ ⚅  4  14 

⚁ ⚃ ⚄ ⚅  4  4  ⚀ ⚁ ⚂ ⚄  4  10  ⚁ ⚄  4  14 
⚀ ⚁ ⚂ ⚃ ⚅  1  5  ⚀ ⚃ ⚅  6  10  ⚂ ⚃  4  14 

⚀ ⚃ ⚄ ⚅  4  5  ⚁ ⚂ ⚅  6  10  ⚀ ⚁ ⚂  6  15 
⚁ ⚂ ⚄ ⚅  4  5  ⚁ ⚃ ⚄  6  10  ⚀ ⚄  4  15 

⚀ ⚁ ⚂ ⚃ ⚄  1  6  ⚄ ⚅  4  10  ⚁ ⚃  4  15 
⚀ ⚂ ⚄ ⚅  4  6  ⚀ ⚁ ⚂ ⚃  4  11  ⚅  1  15 
⚁ ⚂ ⚃ ⚅  4  6  ⚀ ⚂ ⚅  6  11  ⚀ ⚃  4  16 

⚃ ⚄ ⚅  6  6  ⚀ ⚃ ⚄  6  11  ⚁ ⚂  4  16 
⚀ ⚁ ⚄ ⚅  4  7  ⚁ ⚂ ⚄  6  11  ⚄  1  16 
⚀ ⚂ ⚃ ⚅  4  7  ⚃ ⚅  4  11  ⚀ ⚂  4  17 
⚁ ⚂ ⚃ ⚄  4  7  ⚀ ⚁ ⚅  6  12  ⚃  1  17 

⚂ ⚄ ⚅  6  7  ⚀ ⚂ ⚄  6  12  ⚀ ⚁  4  18 
⚀ ⚁ ⚃ ⚅  4  8  ⚁ ⚂ ⚃  6  12  ⚂  1  18 
⚀ ⚂ ⚃ ⚄  4  8  ⚂ ⚅  4  12  ⚁  1  19 

⚁ ⚄ ⚅  6  8  ⚃ ⚄  4  12  ⚀  1  20 
⚂ ⚃ ⚅  6  8  ⚀ ⚁ ⚄  6  13    252   

Table 10. Possible values of the set 𝑆𝑆 for 5-dice rolls, the number of corresponding rolls, and Σ̇(𝑅𝑅) for these rolls. 

An example: With 𝑆𝑆 = ⚂ ⚃ ⚄ ⚅, we have 𝑟𝑟𝑆𝑆 = 4 (see Table 10), since 𝑆𝑆 = Supp( ⚂ ⚂ ⚃ ⚄ ⚅ ), 
𝑆𝑆 = Supp( ⚂ ⚃ ⚃ ⚄ ⚅ ), 𝑆𝑆 = Supp( ⚂ ⚃ ⚄ ⚄ ⚅ ), and 𝑆𝑆 = Supp( ⚂ ⚃ ⚄ ⚅ ⚅ ). 

 
13  Sequences can be regarded as ordered multisets. See https://en.wikipedia.org/wiki/Sequence for a discussion about the concept. 
14  Here, a value 𝑑𝑑𝑘𝑘 having a multiplicity of zero means that 𝑑𝑑𝑘𝑘 ∉ 𝑅𝑅. For instance, 𝑅𝑅 = {10, 20, 31, 40, 52, 60} = ⚂ ⚄ ⚄ (𝑛𝑛 = 3). 
15  If we regard outcomes as ordered multisets, ℛ6,𝑛𝑛 is a family of subsets of 𝒪𝒪6,𝑛𝑛, see https://en.wikipedia.org/wiki/Family_of_sets. 
16  The number 252 is the multiset coefficient, given by the binomial coefficient �𝑓𝑓+𝑛𝑛−1𝑛𝑛 �, i.e., the number of multisets of cardinality 𝑛𝑛, 
  with elements taken from a finite set of cardinality 𝑓𝑓. In this case, 𝑛𝑛 = 5 (five dice) and 𝑓𝑓 = |𝐷𝐷| = 6 (six-faced dice). 

https://en.wikipedia.org/wiki/Sequence
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In Table 10, we see that 𝑟𝑟𝑆𝑆 = 1, 4, 6, 4, 1 for |𝑆𝑆| = 1, 2, 3, 4, 5, respectively. The fourth row in Pascal’s 
triangle is also 1, 4, 6, 4, 1 (the top row is the 0th). We’ll get back to these binomial coefficients in section 2.7. 

We have previously defined the set 𝑆𝑆 by converting each corresponding roll 𝑅𝑅 from a multiset to a set, thus removing 
duplicate elements from each 𝑅𝑅. In other words, for each roll 𝑅𝑅 we have 𝑆𝑆 = 𝑅𝑅 ∩ 𝐷𝐷.17 Defining 𝑆𝑆 this way is useful 
when we need to find the inverted sum of a roll, for instance when playing games. To be exact, with this approach, 
𝑆𝑆 is a function, 𝑆𝑆:ℛ6,𝑛𝑛 ⟶ 𝒮𝒮6,𝑛𝑛, where the codomain 𝒮𝒮6,𝑛𝑛 is the set of all possible sets 𝑆𝑆 for 𝑛𝑛 6-faced dice. 

The cardinality of the domain ℛ6,𝑛𝑛 increases as 𝑛𝑛 increases, while for 𝑛𝑛 > 5, the cardinality of 𝒮𝒮6,𝑛𝑛 is always 63 
(for 𝑛𝑛 = 5, it is 62, as mentioned before). To see this, let 𝒫𝒫(𝐷𝐷) be the power set of the set 𝐷𝐷, i.e., 𝒫𝒫(𝐷𝐷) is the 
set of all subsets of 𝐷𝐷, including both 𝐷𝐷 itself and ∅.18 We have |𝒫𝒫(𝐷𝐷)| = 26 = 64, so �𝒮𝒮6,5� = 64− 2 = 62, 
since neither 𝐷𝐷 nor ∅ is in 𝒮𝒮6,5. 

For each inverted sum 𝑥𝑥 (where 0 ≤ 𝑥𝑥 ≤ 20), let 𝑠𝑠𝑥𝑥 be the number of sets 𝑆𝑆 with the inverted sum 𝑥𝑥. In other 
words, 𝑠𝑠𝑥𝑥 = ��𝑆𝑆𝑆𝑆𝒮𝒮6,𝑛𝑛: Σ̇(𝑆𝑆) = 𝑥𝑥��. Also, let 𝑟𝑟𝑥𝑥 = ��𝑅𝑅 ∈ ℛ6,𝑛𝑛: Σ̇(𝑅𝑅) = 𝑥𝑥�� and 𝑜𝑜𝑥𝑥 = ��𝑂𝑂 ∈ 𝒪𝒪6,𝑛𝑛: Σ̇(𝑂𝑂) = 𝑥𝑥��.19 
Now, let’s look at the probabilities for 5-dice rolls. 

𝑥𝑥  𝑠𝑠𝑥𝑥  𝑟𝑟𝑥𝑥  𝑜𝑜𝑥𝑥  Pr(5, Σ̇(𝑅𝑅) = 𝑥𝑥) 
1  1  1  120  120/7776 ≈ 1.543% 
2  1  1  120  120/7776 ≈ 1.543% 
3  2  5  360  360/7776 ≈ 4.630% 
4  2  5  360  360/7776 ≈ 4.630% 
5  3  9  600  600/7776 ≈ 7.716% 
6  4  15  750  750/7776 ≈ 9.645% 
7  4  18  870  870/7776 ≈ 11.188% 
8  4  20  780  780/7776 ≈ 10.031% 
9  5  26  930  930/7776 ≈ 11.960% 

10  5  26  720  720/7776 ≈ 9.259% 
11  5  26  720  720/7776 ≈ 9.259% 
12  5  26  510  510/7776 ≈ 6.559% 
13  4  20  360  360/7776 ≈ 4.630% 
14  4  18  240  240/7776 ≈ 3.086% 
15  4  15  211  211/7776 ≈ 2.713% 
16  3  9  61  61/7776 ≈ 0.784% 
17  2  5  31  31/7776 ≈ 0.399% 
18  2  5  31  31/7776 ≈ 0.399% 
19  1  1  1  1/7776 ≈ 0.013% 
20  1  1  1  1/7776 ≈ 0.013% 

  62  252  7776   

Table 11. Possible inverted sums (𝑥𝑥) of a five-dice roll, with the corresponding number of sets 𝑆𝑆 (𝑠𝑠𝑥𝑥), 
the corresponding number of distinct rolls (𝑟𝑟𝑥𝑥), and the corresponding number of outcomes (𝑜𝑜𝑥𝑥) for each 𝑥𝑥. 

The probability distribution is quite strange, as seen in Table 11. Each of the inverted sums 9 to 12, corresponds 
to 26 distinct rolls (and 5 different sets 𝑆𝑆). The inverted sum most likely to occur is 𝑥𝑥 = 9, followed by 𝑥𝑥 = 7 
(corresponding to only 18 distinct rolls), 𝑥𝑥 = 8 (corresponding to 20 distinct rolls), and 𝑥𝑥 = 6 (15 distinct rolls). 
The relationship between 𝑠𝑠𝑥𝑥, 𝑟𝑟𝑥𝑥 and 𝑜𝑜𝑥𝑥 is not intuitively clear, as seen in Table 11. 

 
17  To my knowledge, there is no standard notation for converting a multiset to a set. Hence, using the intersection as a set constructing 
  operator is probably one of the least confusing ways to notate such conversions. I have seen several other suggestions, such as 
  defining the brackets to be set constructing operators, so 𝑆𝑆 = {𝑥𝑥: 𝑥𝑥 ∈ 𝑅𝑅} or 𝑆𝑆 = ⋃ {𝑥𝑥}𝑥𝑥∈𝑅𝑅 , but I use the brackets for multisets as well, 
  which makes this a poor alternative here. We could introduce a set constructor, Set, and write 𝑆𝑆 = Set(𝑅𝑅), but it seems unnecessary. 
18  For more information about power sets, see https://en.wikipedia.org/wiki/Power_set. 
19  Here, Σ̇(𝑂𝑂) is the inverted sum of the sequence 𝑂𝑂. Strictly speaking, we have not defined what this means, so let’s define it as 
  Σ̇(𝑅𝑅(𝑂𝑂)), where 𝑅𝑅(𝑂𝑂) is the value of 𝑅𝑅 applied to the argument 𝑂𝑂 (with 𝑅𝑅 being the function 𝑅𝑅: 𝒪𝒪6,𝑛𝑛 ⟶ ℛ6,𝑛𝑛 in this context). 
  As earlier, Σ̇(𝑅𝑅) and Σ̇(𝑆𝑆) are the inverted sums of the multiset 𝑅𝑅 and the set 𝑆𝑆, respectively. 

https://en.wikipedia.org/wiki/Power_set
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The intersection of the images of the functions Σ̇ and Σ is the integers from 5 to 20, and the union is {1, 2, …, 30}. 
It is left to the reader to find a simple rule (like the ones in previous sections) that allows us to interpret a roll of 
5 dice as a value between 1 and 30. Such rule could be advantageous in games. 

We have Pr(5, Σ(𝑅𝑅) = 17) = Pr(5, Σ(𝑅𝑅) = 18) = Pr�5, Σ̇(𝑅𝑅) = 8� = 780/7776, while for 𝑥𝑥 ≠ 8, there is no 𝑦𝑦, 
such that Pr(4, Σ(𝑅𝑅) = 𝑦𝑦) = Pr�4, Σ̇(𝑅𝑅) = 𝑥𝑥�, except the trivial solutions 𝑦𝑦 < 5, 𝑦𝑦 > 30, 𝑥𝑥 < 1, and 𝑥𝑥 > 20. 

The equation Σ̇(𝑅𝑅) = Σ(𝑅𝑅) has 3 solutions for 𝑛𝑛 = 5: 𝑅𝑅 ∈ {{12, 3, 42}, {12, 22, 6}, {12, 2, 3, 4}}.20 

We have Pr(5, Σ̇(𝑅𝑅) is odd) ≈ 54.1% and Pr(5, Σ̇(𝑅𝑅) is prime) ≈ 39.4%, while for regular sums, we have 
Pr(5, Σ(𝑅𝑅) is odd) = 50% and Pr(5, Σ(𝑅𝑅) is prime) ≈ 31.7%. 

The image of Σ+Σ̇ (sum of regular and inverted sum, as earlier) is {21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 
33, 34, 35, 36, 37, 38, 39, 41, 45}. Not much fun there. 

Now, let Δ(𝑅𝑅) = �Σ(𝑅𝑅) − Σ̇(𝑅𝑅)�, as before. Then, the image of Δ contains all 22 integers from 0 to 21, and the 
probability distribution for Δ is interesting, because of its dispersion. It has a low variance (4.11) compared to 
the variance of the probability distribution of both regular (13.17) and inverted (16.14) sums.21 Below is the 
probability table. 

𝑥𝑥  Pr(5,Δ(𝑅𝑅) = 𝑥𝑥)  𝑥𝑥  Pr(5,Δ(𝑅𝑅) = 𝑥𝑥)  𝑥𝑥  Pr(5,Δ(𝑅𝑅) = 𝑥𝑥) 
0  120/7776 ≈ 1.54%  8  390/7776 ≈ 5.02%  16  185/7776 ≈ 2.38% 
1  405/7776 ≈ 5.21%  9  682/7776 ≈ 8.77%  17  395/7776 ≈ 5.08% 
2  320/7776 ≈ 4.12%  10  390/7776 ≈ 5.02%  18  190/7776 ≈ 2.44% 
3  422/7776 ≈ 5.43%  11  580/7776 ≈ 7.46%  19  315/7776 ≈ 4.05% 
4  395/7776 ≈ 5.08%  12  410/7776 ≈ 5.27%  20  90/7776 ≈ 1.16% 
5  460/7776 ≈ 5.92%  13  555/7776 ≈ 7.14%  21  80/7776 ≈ 1.03% 
6  435/7776 ≈ 5.59%  14  180/7776 ≈ 2.31%     
7  280/7776 ≈ 3.60%  15  497/7776 ≈ 6.39%     

Table 12. Possible values of Δ(𝑅𝑅) = �Σ(𝑅𝑅) − Σ̇(𝑅𝑅)� for a five-dice roll, with corresponding probabilities. 

The rule Δ defined above might be useful when creating new games. The highest values (20 and 21) are hard to 
get in one roll, but within reach in a normal dice game. 

That being said, Pr�5, Σ̇(𝑅𝑅) = 19� = Pr�5, Σ̇(𝑅𝑅) = 20� = 1
7776

 is what makes it almost impossible to get 
maximum points in Inverted Dice™, where you have three rolls every turn. And that’s part of the game. 

2.6. Rolls with six dice 
The case with 6 dice is also interesting, since it is the first case which has 21 different possible inverted sums, 
and the first case where it is possible to get the inverted sum zero. Maybe it is also the last case that has some 
practical use, since rolling more than 6 physical dice at the same time is difficult (most dice cups are of limited 
size). Here’s the probability table: 

𝑥𝑥  Pr(6, Σ̇(𝑅𝑅) = 𝑥𝑥)  𝑥𝑥  Pr(6, Σ̇(𝑅𝑅) = 𝑥𝑥)  𝑥𝑥  Pr(6, Σ̇(𝑅𝑅) = 𝑥𝑥) 
0  720/46656 ≈ 1.5432%  7  5220/46656 ≈ 11.1883%  14  726/46656 ≈ 1.5561% 
1  1800/46656 ≈ 3.8580%  8  4200/46656 ≈ 9.0021%  15  665/46656 ≈ 1.4253% 
2  1800/46656 ≈ 3.8580%  9  4740/46656 ≈ 10.1595%  16  125/46656 ≈ 0.2679% 
3  3360/46656 ≈ 7.2016%  10  3242/46656 ≈ 6.9487%  17  63/46656 ≈ 0.1350% 
4  3360/46656 ≈ 7.2016%  11  3242/46656 ≈ 6.9487%  18  63/46656 ≈ 0.1350% 
5  4920/46656 ≈ 10.5453%  12  1744/46656 ≈ 3.7380%  19  1/46656 ≈ 0.0021% 
6  5460/46656 ≈ 11.7027%  13  1204/46656 ≈ 2.5806%  20  1/46656 ≈ 0.0021% 

Table 13. Possible values of Σ̇(𝑅𝑅) for a five-dice roll, with corresponding probabilities. 

The inverted sum that is most likely to occur is 6, followed by 7, 5, 9, 8 (in that order) as seen in the table above. 

 
20  The upper indices represent the multiplicities greater than 1 (as in section 2.4). 
21  Variance might not be the most adequate measure of dispersion here, but supplemented with Table 12, it illustrates the situation sufficiently. 

https://www.simonjensen.com/InvertedDice/
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We have �𝒪𝒪6,6� = 66 = 46656 different outcomes of a 6-dice roll, and there are �ℛ6,6� = 462 distinct rolls and 
�𝒮𝒮6,6� = 63 different sets 𝑆𝑆. There are 8 distinct rolls 𝑅𝑅 satisfying Σ̇(𝑅𝑅) = Σ(𝑅𝑅): 

⚀ ⚀ ⚀ ⚀ ⚁ ⚅ (12)    ⚀ ⚀ ⚀ ⚀ ⚂ ⚄ (12)    ⚀ ⚀ ⚀ ⚂ ⚂ ⚃ (13)    ⚀ ⚀ ⚁ ⚁ ⚁ ⚄ (13) 
⚀ ⚀ ⚁ ⚁ ⚃ ⚃ (14)    ⚀ ⚁ ⚂ ⚂ ⚂ ⚂ (15)    ⚁ ⚁ ⚂ ⚂ ⚂ ⚂ (16)    ⚂ ⚂ ⚂ ⚂ ⚂ ⚂ (18) 

The rule Δ (i.e., Δ(𝑅𝑅) = �Σ(𝑅𝑅) − Σ̇(𝑅𝑅)�, as before) produces all 28 integers from 0 to 27. I leave it to the reader 
to investigate the probabilities for Δ and other rules, as discussed above. 

The case 𝑛𝑛 = 6 might be useful in games, even though the chance of rolling the inverted sums 19 and 20 are 
very low. When constructing games, these two rolls could be given an extraordinary meaning (such as doubling 
all points, immediately ending the game, giving the player an extra roll, etc.). We could also let the inverted 
sum 0 have a special meaning in the game, like with a roulette. Only our creativity sets the limit. 

There is more to be said here, but I leave it to the reader to further explore the world of inverted dice rolls with 
six standard dice. In the next section, we will summarize what we know about rolls of 𝑛𝑛 dice, and take a closer 
look at their probabilities, before briefly discussing non-standard dice in section 3. 

2.7. Rolls with 𝒏𝒏 dice 
As before, let 𝐷𝐷 = {1, 2, 3, 4, 5, 6} be the set of possible dice values, let 𝒪𝒪6,𝑛𝑛 be the set of possible outcomes of 
a roll with 𝑛𝑛 dice, and let ℛ6,𝑛𝑛 be the set of all distinct 𝑛𝑛-dice rolls (multisets of cardinality 𝑛𝑛). Elements in 𝒪𝒪6,𝑛𝑛 
are sequences with 𝑛𝑛 terms, and elements in ℛ6,𝑛𝑛 are multisets of cardinality 𝑛𝑛. We have �𝒪𝒪6,𝑛𝑛� = 6𝑛𝑛 and 
�ℛ6,𝑛𝑛� =  �6+𝑛𝑛−1𝑛𝑛 � = (𝑛𝑛+5)!

120∙𝑛𝑛!
. 

Let 𝒮𝒮6,𝑛𝑛 = {𝑆𝑆 ∈ 𝒫𝒫+(𝐷𝐷): |𝑆𝑆| ≤ 𝑛𝑛}, where 𝒫𝒫+(𝐷𝐷) is the set of non-empty subsets of D, i.e., 𝒫𝒫+(𝐷𝐷) = 𝒫𝒫(𝐷𝐷) ∖ ∅.22 
In other words, 𝒮𝒮6,𝑛𝑛 is the subset of 𝒫𝒫(𝐷𝐷) having elements of cardinality 𝑛𝑛 or lower (but non-zero). For 𝑛𝑛 ≥ |𝐷𝐷|, 
𝒮𝒮6,𝑛𝑛 = 𝒫𝒫+(𝐷𝐷), as seen in previous sections. The cardinality of 𝒮𝒮6,𝑛𝑛 is given by 

�𝒮𝒮6,𝑛𝑛� = ��
6
𝑘𝑘
�

𝑛𝑛

𝑘𝑘=1

 

where the terms �6𝑘𝑘� equals 0 for 𝑘𝑘 > 6. Thus, �𝒮𝒮6,𝑛𝑛� = 6, 21, 41, 56, 62 for 𝑛𝑛 = 1, 2, 3, 4, 5, as seen in the 
previous discussion. For 𝑛𝑛 > 5, �𝒮𝒮6,𝑛𝑛� equals 63. 

We have previously referred to the image of Σ and the image of Σ̇, so let us define the functions Σ and Σ̇ properly. 
Let Σ:ℛ6,𝑛𝑛 ⟶ ℕ be a function such that 

Σ(𝑅𝑅) = Σ��𝑑𝑑𝑘𝑘
𝑚𝑚𝑘𝑘�� = � 𝑑𝑑𝑘𝑘

𝑑𝑑𝑘𝑘∈𝐷𝐷

∙ 𝑚𝑚𝑘𝑘 = �𝑘𝑘 ∙ 𝑚𝑚𝑘𝑘

6

𝑘𝑘=1

 

where 𝑅𝑅 ∈ ℛ6,𝑛𝑛 is a multiset {𝑑𝑑𝑘𝑘
𝑚𝑚𝑘𝑘} of cardinality 𝑛𝑛.23 As before, the upper indices 𝑚𝑚𝑘𝑘 represent the multiplicities, 

with 𝑚𝑚𝑘𝑘 = 0 meaning 𝑑𝑑𝑘𝑘 ∉ 𝑅𝑅. In short, Σ(𝑅𝑅) is the sum of all 𝑛𝑛 dice values in the roll 𝑅𝑅, with repetitions. 

Let Σ�ℛ6,𝑛𝑛� = {Σ(𝑅𝑅):𝑅𝑅 ∈ ℛ6,𝑛𝑛} denote the image of ℛ6,𝑛𝑛 under Σ, in short (as earlier), the image of Σ. It is easy 
to see that Σ�ℛ6,𝑛𝑛� = {𝑛𝑛, 𝑛𝑛 + 1, 𝑛𝑛 + 2, …, 6𝑛𝑛} and 𝜎𝜎(𝑛𝑛) = �Σ�ℛ6,𝑛𝑛�� = 5𝑛𝑛 + 1 (see Table 2). 

Let Σ̇:ℛ6,𝑛𝑛 ⟶ ℕ be a function such that 

Σ̇(𝑅𝑅) = 21 −�𝑑𝑑
𝑑𝑑∈𝑆𝑆

 

where, as earlier, 𝑆𝑆 = 𝑅𝑅 ∩ 𝐷𝐷. In short, Σ̇(𝑅𝑅) is the sum of all 𝑛𝑛 dice values not in the roll 𝑅𝑅, i.e., the inverted sum. 

Let Σ̇�ℛ6,𝑛𝑛� = {Σ̇(𝑅𝑅):𝑅𝑅 ∈ ℛ6,𝑛𝑛} denote the image of ℛ6,𝑛𝑛 under Σ̇, in short, the image of Σ̇. For 𝑛𝑛 > 5, we have 
Σ̇�ℛ6,𝑛𝑛� = {0, 1, 2, …, 20} and �̇�𝜎(𝑛𝑛) = �Σ̇�ℛ6,𝑛𝑛�� = 21. For 𝑛𝑛 ≤ 5, I refer to Table 2. 

 
22  As in section 2.5, 𝒫𝒫(𝐷𝐷) is the power set of 𝐷𝐷. 
23  To the best of my knowledge, there is no standard notation for summation of elements in a multiset, but I hope the notation used here 
  is relatively clear. 
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The table below contains the intersection Σ�ℛ6,𝑛𝑛� ∩ Σ̇�ℛ6,𝑛𝑛� and the union Σ�ℛ6,𝑛𝑛� ∪ Σ̇�ℛ6,𝑛𝑛� for all 𝑛𝑛. 

𝑛𝑛  Σ�ℛ6,𝑛𝑛� ∩ Σ̇�ℛ6,𝑛𝑛�  Σ�ℛ6,𝑛𝑛� ∪ Σ̇�ℛ6,𝑛𝑛�  𝑛𝑛  Σ�ℛ6,𝑛𝑛� ∩ Σ̇�ℛ6,𝑛𝑛�  Σ�ℛ6,𝑛𝑛� ∪ Σ̇�ℛ6,𝑛𝑛�   
1  ∅  𝐷𝐷 ∪ {15, 16, … , 20}  12  {12, 13, … , 20}  {0, 1, … , 72}  
2  {10, 11, 12}  {2, 3, … , 20}  13  {13, 14, … , 20}  {0, 1, … , 78}  
3  {6, 7, … , 18}  {3, 4, … , 20}  14  {14, 15, … , 20}  {0, 1, … , 84}  
4  {4, 5, … , 20}  {3, 4, … , 24}  15  {15, 16, … , 20}  {0, 1, … , 90}  
5  {5, 6, … , 20}  {1, 2, … , 30}  16  {16, 17, … , 20}  {0, 1, … , 96}  
6  {6, 7, … , 20}  {0, 1, … , 36}  17  {17, 18, 19, 20}  {0, 1, … , 102}  
7  {7, 8, … , 20}  {0, 1, … , 42}  18  {18, 19, 20}  {0, 1, … , 108}  
8  {8, 9, … , 20}  {0, 1, … , 48}  19  {19, 20}  {0, 1, … , 114}  
9  {9, 10, … , 20}  {0, 1, … , 54}  20  {20}  {0, 1, … , 120}  

10  {10, 11, … , 20}  {0, 1, … , 60}  21  ∅  {0, 1, … , 126}  
11  {11, 12, … , 20}  {0, 1, … , 66}  𝒏𝒏 > 𝟐𝟐𝟏𝟏        ∅          {0, 1, … , 20} ∪ {𝑛𝑛,𝑛𝑛 + 1, … , 6𝑛𝑛}  

Table 14. Intersections and unions of the images Σ�ℛ6,𝑛𝑛� and Σ̇�ℛ6,𝑛𝑛�. 

There are some interesting things to be learned from Table 14. For 𝑛𝑛 = 1 or 𝑛𝑛 ≥ 22, there exist some numbers 𝑥𝑥 
between the minimum and the maximum of Σ�ℛ6,𝑛𝑛� ∪ Σ̇�ℛ6,𝑛𝑛� such that 𝑥𝑥 is not itself an element of the union, 
while for 2 ≤ 𝑛𝑛 ≤ 21, the union of can be regarded as an integer sequence without such “holes”. Also, it is 
worth noticing, that for 6 ≤ 𝑛𝑛 ≤ 21, these sequences have the form 0, 1, …, 6𝑛𝑛, i.e., they have 6𝑛𝑛 + 1 terms. 
This might be relevant when making new games since it allows us to interpret for instance a roll of six dice (with a 
total of 36 faces) as one of 37 different values, in a relatively simple way. 

When it comes to the intersection of Σ�ℛ6,𝑛𝑛� and Σ̇�ℛ6,𝑛𝑛�, Table 14 shows us that for 4 ≤ 𝑛𝑛 ≤ 20, it is simply the 
numbers from 𝑛𝑛 to 20. Hence, Σ�ℛ6,4� ∩ Σ̇�ℛ6,4� has the highest cardinality among all such intersections. 

In previous sections, we have listed all rolls 𝑅𝑅 satisfying the equation Σ(𝑅𝑅) = Σ̇(𝑅𝑅) for 𝑛𝑛 < 7. Table 14 shows us 
that no solutions can exist for 𝑛𝑛 > 20 (since Σ�ℛ6,𝑛𝑛� ∩ Σ̇�ℛ6,𝑛𝑛� is empty when 𝑛𝑛 > 20). Interestingly, there are 
rather few solutions even in cases with a large number of possible outcomes. For instance, with 𝑛𝑛 = 13, we have 
�𝒪𝒪6,13� = 13060694016 possible outcomes, but only 3 solutions, 𝑅𝑅 = {112, 4}, 𝑅𝑅 = {111, 32}, and 𝑅𝑅 = {18, 25}. 
It is left to the reader to find the rest of the solutions in the cases 𝑛𝑛 ≥ 7. 

The probability of getting the inverted sum 0 in an 𝑛𝑛-dice roll approaches 100% as 𝑛𝑛 approaches infinity, and 
we do not need hundreds of dice to see this in the probability distribution. As an example, 𝑃𝑃r�15, Σ̇(𝑅𝑅) = 0� is 
approximately 64.4% and 𝑃𝑃r�20, Σ̇(𝑅𝑅) = 0� is approximately 84.8%. 

The sets 𝒪𝒪6,𝑛𝑛 and ℛ6,𝑛𝑛 depend on 𝑛𝑛. But for 𝑛𝑛 > 5, the set 𝒮𝒮6,𝑛𝑛 is a constant set containing 63 elements (being 
sets themselves), even though the probability of each 𝑆𝑆 ∈ 𝒮𝒮6,𝑛𝑛 occurring depends on 𝑛𝑛. Let us recall our 
definitions from section 2.5. For each 𝑆𝑆 ∈ 𝒮𝒮6,𝑛𝑛, let 𝑟𝑟𝑆𝑆 = ��𝑅𝑅 ∈ ℛ6,𝑛𝑛 ∶ Supp(𝑅𝑅) = 𝑆𝑆��. For each inverted dice 
sum 𝑥𝑥, let 𝑠𝑠𝑥𝑥 = ��𝑆𝑆𝑆𝑆𝒮𝒮6,𝑛𝑛: Σ̇(𝑆𝑆) = 𝑥𝑥��, 𝑟𝑟𝑥𝑥 = ��𝑅𝑅 ∈ ℛ6,𝑛𝑛: Σ̇(𝑅𝑅) = 𝑥𝑥��, and 𝑜𝑜𝑥𝑥 = ��𝑂𝑂 ∈ 𝒪𝒪6,𝑛𝑛: Σ̇(𝑂𝑂) = 𝑥𝑥��. 

We can calculate each probability as Pr�𝑛𝑛, Σ̇(𝑅𝑅) = 𝑥𝑥� = 𝑜𝑜𝑥𝑥
6𝑛𝑛

, that part is easy. The challenge is to find 𝑜𝑜𝑥𝑥 (to count 
the outcomes) for each 𝑥𝑥. Table 10 in section 2.5 contains all 𝑆𝑆 for 𝑛𝑛 = 5. Adding 𝑆𝑆 = ⚀ ⚁ ⚂ ⚃ ⚄ ⚅ to 
that table gives us a complete list of all 63 sets in 𝒮𝒮6,𝑛𝑛 for 𝑛𝑛 > 5. For each inverted sum 𝑥𝑥, Table 15 below 
shows 𝑠𝑠𝑥𝑥 and the cardinalities |𝑆𝑆| for each of the different sets 𝑆𝑆 corresponding to 𝑥𝑥 (in the sense Σ̇(𝑆𝑆) = 𝑥𝑥). 
For each 𝑥𝑥, let 𝒞𝒞𝑥𝑥 denote the multiset consisting of these cardinalities. Then obviously, we have 𝑠𝑠𝑥𝑥 = |𝒞𝒞𝑥𝑥|. 

𝑥𝑥  𝑠𝑠𝑥𝑥  𝒞𝒞𝑥𝑥  𝑥𝑥  𝑠𝑠𝑥𝑥  𝒞𝒞𝑥𝑥  𝑥𝑥  𝑠𝑠𝑥𝑥  𝒞𝒞𝑥𝑥  𝑥𝑥  𝑠𝑠𝑥𝑥  𝒞𝒞𝑥𝑥 
0  1  {6}  6  4  {3, 4, 4, 5}  12  5  {2, 2, 3, 3, 3}  18  2  {1, 2} 
1  1  {5}  7  4  {3, 4, 4, 4}  13  4  {2, 2, 3, 3}  19  1  {1} 
2  1  {5}  8  4  {3, 3, 4, 4}  14  4  {2, 2, 2, 3}  20  1  {1} 
3  2  {4, 5}  9  5  {3, 3, 3, 4, 4}  15  4  {1, 2, 2, 3}    63   
4  2  {4, 5}  10  5  {2, 3, 3, 3, 4}  16  3  {1, 2, 2}       
5  3  {4, 4, 5}  11  5  {2, 3, 3, 3, 4}  17  2  {1, 2}       

Table 15. Number of sets 𝑆𝑆 (𝑠𝑠𝑥𝑥) and the cardinalities for each 𝑆𝑆 (𝒞𝒞𝑥𝑥) for each inverted sum 𝑥𝑥. 
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Before, we proceed, an example might be necessary. For 𝑥𝑥 = 6, we have 𝑠𝑠6 = 4 since there are 4 different sets 𝑆𝑆, 
such that Σ̇(𝑆𝑆) = 6. These sets are {4, 5, 6}, {1, 3, 5, 6}, {2, 3, 4, 6}, and {1, 2, 3, 4, 5}, and their cardinalities 
are 3, 4, 4, 5, respectively, so 𝒞𝒞6 = {3, 4, 4, 5}. 

The 21 multisets 𝒞𝒞𝑥𝑥 do not depend on 𝑛𝑛, only on the values in 𝐷𝐷. Table 15 shows us, that 𝒞𝒞1 = 𝒞𝒞2, 𝒞𝒞3 = 𝒞𝒞4, 
𝒞𝒞10 = 𝒞𝒞11, 𝒞𝒞17 = 𝒞𝒞18, and 𝒞𝒞19 = 𝒞𝒞20. As we shall see below, this implies that 𝑜𝑜1 = 𝑜𝑜2, 𝑜𝑜3 = 𝑜𝑜4, 𝑜𝑜10 = 𝑜𝑜11, 
𝑜𝑜17 = 𝑜𝑜18, and 𝑜𝑜19 = 𝑜𝑜20, so for all 𝑛𝑛, Pr�𝑛𝑛, Σ̇(𝑅𝑅) = 𝑥𝑥� = Pr�𝑛𝑛, Σ̇(𝑅𝑅) = 𝑥𝑥 + 1� when 𝑥𝑥 ∈ {1, 3, 10, 17, 19}. 
After all, there is some symmetrical beauty hidden in the probabilities of inverted dice sums. 

The number of distinct rolls corresponding to each 𝑆𝑆 is given by 𝑟𝑟𝑆𝑆 = � 𝑛𝑛−1|𝑆𝑆|−1�, where |𝑆𝑆| is cardinality of each 𝑆𝑆. 
This gives us 

𝑟𝑟𝑥𝑥 = � �
𝑛𝑛 − 1
𝑐𝑐 − 1

� =
𝑐𝑐∈𝒞𝒞𝑥𝑥

�
Γ(𝑛𝑛)

Γ(𝑐𝑐)Γ(𝑛𝑛 − 𝑐𝑐 + 1)
𝑐𝑐∈𝒞𝒞𝑥𝑥

 

where 𝑐𝑐 ∈ 𝒞𝒞𝑥𝑥 indicates summation over the multiset 𝒞𝒞𝑥𝑥 so elements with multiplicity 𝑚𝑚 are added 𝑚𝑚 times.24 

For example, there are 𝑟𝑟15 = �6−1𝟏𝟏−1� + �6−1𝟐𝟐−1�+ �6−1𝟐𝟐−1� + �6−1𝟑𝟑−1� = �50� + �51� + �51� + �52� = 1 + 5 + 5 + 10 = 21 
distinct 6-dice rolls with an inverted sum of 15 (the green numbers are seen in the 𝒞𝒞𝑥𝑥-column of Table 15). 

As we did in section 2.5, let us regard distinct rolls as a function 𝑅𝑅: 𝒪𝒪6,𝑛𝑛 ⟶ ℛ6,𝑛𝑛. Let 𝑅𝑅(𝑂𝑂) denote the value of 𝑅𝑅 
applied to an argument 𝑂𝑂 ∈ 𝒪𝒪6,𝑛𝑛. Now, for each 𝑆𝑆𝑆𝑆𝒮𝒮6,𝑛𝑛, let 𝑜𝑜𝑆𝑆 = ��𝑂𝑂 ∈ 𝒪𝒪6,𝑛𝑛 ∶ Supp(𝑅𝑅(𝑂𝑂)) = 𝑆𝑆��. In plain words, 
𝑜𝑜𝑆𝑆 is the number of outcomes corresponding to each 𝑆𝑆, i.e., the number of sequences 𝑂𝑂 such that all elements in 
𝑆𝑆, and no other values, are terms in 𝑂𝑂. For each 𝑆𝑆𝑆𝑆𝒮𝒮6,𝑛𝑛, finding 𝑜𝑜𝑆𝑆 is equivalent to finding the cardinality of the 
set of all surjective mappings from a set with |𝑂𝑂| = 𝑛𝑛 elements onto 𝑆𝑆.25 That cardinality is given by 

𝑜𝑜𝑆𝑆 = |𝑆𝑆|! �
𝑛𝑛

|𝑆𝑆|� = �(−1)|𝑆𝑆|−𝑘𝑘

|𝑆𝑆|

𝑘𝑘=0

�
|𝑆𝑆|
𝑘𝑘 �

𝑘𝑘𝑛𝑛 = |𝑆𝑆|!�
(−1)|𝑆𝑆|−𝑘𝑘𝑘𝑘𝑛𝑛

(|𝑆𝑆| − 𝑘𝑘)!𝑘𝑘!

|𝑆𝑆|

𝑘𝑘=0

 

where the brackets � 𝑛𝑛|𝑆𝑆|� denotes the Stirling number of the second kind.26 

With this, we can write 𝑜𝑜𝑥𝑥 = ��𝑂𝑂 ∈ 𝒪𝒪6,𝑛𝑛: Σ̇(𝑂𝑂) = 𝑥𝑥�� as 

𝑜𝑜𝑥𝑥 = ��(−1)𝑐𝑐−𝑘𝑘 �
𝑐𝑐
𝑘𝑘
�

𝑐𝑐

𝑘𝑘=0

𝑘𝑘𝑛𝑛

𝑐𝑐∈𝒞𝒞𝑥𝑥

 

which gives us an expression for the probability of getting the inverted sum 𝑥𝑥 with a roll of 𝑛𝑛 standard dice: 

Pr�𝑛𝑛, Σ̇(𝑅𝑅) = 𝑥𝑥� =
𝑜𝑜𝑥𝑥
6𝑛𝑛

=
1

6𝑛𝑛�
�(−1)𝑐𝑐−𝑘𝑘 �

𝑐𝑐
𝑘𝑘
�

𝑐𝑐

𝑘𝑘=0

𝑘𝑘𝑛𝑛

𝑐𝑐∈𝒞𝒞𝑥𝑥

 

where 𝒞𝒞𝑥𝑥 =  

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

{6}  for 𝑥𝑥 = 0
{5}  for 𝑥𝑥 = 1 or 𝑥𝑥 = 2

{4, 5}  for 𝑥𝑥 = 3 or 𝑥𝑥 = 4
{4, 4, 5}  for 𝑥𝑥 = 5

{3, 4, 4, 5}  for 𝑥𝑥 = 6
{3, 4, 4, 4}  for 𝑥𝑥 = 7
{3, 3, 4, 4}  for 𝑥𝑥 = 8

{3, 3, 3, 4, 4}  for 𝑥𝑥 = 9
{2, 3, 3, 3, 4}  for 𝑥𝑥 = 10 or 𝑥𝑥 = 11
{2, 2, 3, 3, 3}  for 𝑥𝑥 = 12

{2, 2, 3, 3}  for 𝑥𝑥 = 13
{2, 2, 2, 3}  for 𝑥𝑥 = 14
{1, 2, 2, 3}  for 𝑥𝑥 = 15

{1, 2, 2}  for 𝑥𝑥 = 16
{1, 2}  for 𝑥𝑥 = 17 or 𝑥𝑥 = 18

{1}  for 𝑥𝑥 = 19 or 𝑥𝑥 = 20

 

 
24  Γ(𝑛𝑛) = (𝑛𝑛 − 1)! is the gamma function. See https://en.wikipedia.org/wiki/Gamma_function for more information. 
25  See https://en.wikipedia.org/wiki/Surjective_function#Space_of_surjections. 
26  See https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind. 

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Surjective_function#Space_of_surjections
https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
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These sixteen conditions in the expression for 𝒞𝒞𝑥𝑥, is as simple as it gets in this introductory text. It might very well 
be possible to deduct a simpler formula for Pr�𝑛𝑛, Σ̇(𝑅𝑅) = 𝑥𝑥�, but this is left for the reader as a challenging exercise 
that involves both the partition function 𝑄𝑄(𝑛𝑛), a bivariate generating function, and Gaussian binomial coefficients.27 
For each 𝑥𝑥, each element 𝑐𝑐 in the multiset 𝒞𝒞𝑥𝑥 correspond to a set 𝑆𝑆 (we have 𝑐𝑐 = |𝑆𝑆|), where Σ̇(𝑆𝑆) = 𝑥𝑥. Since 
𝑥𝑥 = Σ(𝐷𝐷) − Σ(𝑆𝑆) with 𝐷𝐷 = {1, 2, 3, 4, 5, 6}, we have Σ(𝑆𝑆) = 21 − 𝑥𝑥. In other words, each element in 𝒞𝒞𝑥𝑥 is the 
number of parts in a strict partition (the parts are distinct) of the number 21 − 𝑥𝑥 with at most |𝐷𝐷| = 6 parts.28 

I refer to the references and the link section for a demonstration of the methods used for solving problems 
involving this type of partition restrictions. The appendix contains Python scripts that might also be useful. 

3. The 𝒇𝒇-faced case 
The faces ⚀, ⚁, ⚂, ⚃, ⚄, ⚅ of a standard die are the square sides of a cube. While there exist a limited 
number of regular-shaped dice (most commonly having 4, 8, 10, 12, or 20 sides), the concept of 𝑓𝑓-faced dice can 
easily be extended to include all theoretical situations, such as the enormous 𝑓𝑓 = 106 or the boring 𝑓𝑓 = 1.29 

A roll is simply a randomly selected value from the set 𝐷𝐷𝑓𝑓 = {1, 2, …, 𝑓𝑓}, and the probability of each value being 
selected is 1

𝑓𝑓
. The probability of getting the (regular) sum 𝑥𝑥 in a roll with 𝑛𝑛 𝑓𝑓-faced dice is given by 

Pr(𝑛𝑛,𝑓𝑓, Σ(𝑅𝑅) = 𝑥𝑥) =
1
𝑓𝑓𝑛𝑛

� (−1)𝑘𝑘
�𝑥𝑥−𝑛𝑛𝑓𝑓 �

𝑘𝑘=0

�
𝑛𝑛
𝑘𝑘
��
𝑥𝑥 − 𝑘𝑘𝑓𝑓 − 1
𝑛𝑛 − 1

� 

where ⌊ ⌋ is the floor function (Uspensky, 1937). The proof of this uses the technique involving a generating 
function mentioned in section 2.7. Finding a similar expression for Pr�𝑛𝑛,𝑓𝑓, Σ̇(𝑅𝑅) = 𝑥𝑥� might be challenging, 
maybe even impossible. However, it is possible to use 

Pr�𝑛𝑛,𝑓𝑓, Σ̇(𝑅𝑅) = 𝑥𝑥� =
1
𝑓𝑓𝑛𝑛�

�(−1)𝑐𝑐−𝑘𝑘 �
𝑐𝑐
𝑘𝑘
�

𝑐𝑐

𝑘𝑘=0

𝑘𝑘𝑛𝑛

𝑐𝑐∈𝒞𝒞𝑓𝑓,𝑥𝑥

 

where 𝒞𝒞𝑓𝑓,𝑥𝑥 now corresponds to the inverted sum 𝑥𝑥 with 𝑓𝑓-faced dice, but it is a rather tedious approach, since both 
the number of multisets in 𝒞𝒞𝑓𝑓,𝑥𝑥 and the elements in each 𝑐𝑐 ∈ 𝒞𝒞𝑓𝑓,𝑥𝑥 depend on 𝑓𝑓. A few examples are included 
below, for inspirational purposes. A Python script for calculating 𝒞𝒞𝑓𝑓,𝑥𝑥 can be found in the appendix. 

𝒞𝒞3,𝑥𝑥 =  �

{3}  for 𝑥𝑥 = 0
{2}  for 𝑥𝑥 = 1 or 𝑥𝑥 = 2

{1, 2}  for 𝑥𝑥 = 3
{1}  for 𝑥𝑥 = 4 or 𝑥𝑥 = 5

 

𝒞𝒞4,𝑥𝑥 =  

⎩
⎪
⎨

⎪
⎧

{4}  for 𝑥𝑥 = 0
{3}  for 𝑥𝑥 = 1 or 𝑥𝑥 = 2

{2, 3}  for 𝑥𝑥 = 3 or 𝑥𝑥 = 4
{2, 2}  for 𝑥𝑥 = 5
{1, 2}  for 𝑥𝑥 = 6 or 𝑥𝑥 = 7

{1}  for 𝑥𝑥 = 8 or 𝑥𝑥 = 9

 

𝒞𝒞5,𝑥𝑥 =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

{5}  for 𝑥𝑥 = 0
{4}  for 𝑥𝑥 = 1 or 𝑥𝑥 = 2

{3, 4}  for 𝑥𝑥 = 3 or 𝑥𝑥 = 4
{3, 3, 4}  for 𝑥𝑥 = 5
{2, 3, 3}  for 𝑥𝑥 = 6 or 𝑥𝑥 = 7
{2, 2, 3}  for 𝑥𝑥 = 8 or 𝑥𝑥 = 9
{1, 2, 2}  for 𝑥𝑥 = 10

{1, 2}  for 𝑥𝑥 = 11 or 𝑥𝑥 = 12
{1}  for 𝑥𝑥 = 13 or 𝑥𝑥 = 14

 

𝒞𝒞7,𝑥𝑥 =  

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

{7}  for 𝑥𝑥 = 0
{6}  for 𝑥𝑥 = 1 or 𝑥𝑥 = 2

{5, 6}  for 𝑥𝑥 = 3 or 𝑥𝑥 = 4
{5, 5, 6}  for 𝑥𝑥 = 5

{4, 5, 5, 6}  for 𝑥𝑥 = 6
{4, 5, 5, 5, 6}  for 𝑥𝑥 = 7
{4, 4, 5, 5, 5}  for 𝑥𝑥 = 8

{4, 4, 4, 5, 5, 5}  for 𝑥𝑥 = 9
{3, 4, 4, 4, 4, 5, 5}  for 𝑥𝑥 = 10 or 𝑥𝑥 = 11

{3, 3, 4, 4, 4, 4, 4, 5}  for 𝑥𝑥 = 12
{3, 3, 3, 4, 4, 4, 4, 5}  for 𝑥𝑥 = 13
{3, 3, 3, 3, 4, 4, 4, 4}  for 𝑥𝑥 = 14
{2, 3, 3, 3, 3, 4, 4, 4}  for 𝑥𝑥 = 15
{2, 3, 3, 3, 3, 3, 4, 4}  for 𝑥𝑥 = 16

{2, 2, 3, 3, 3, 3, 4}  for 𝑥𝑥 = 17 or 𝑥𝑥 = 18
{2, 2, 2, 3, 3, 3}  for 𝑥𝑥 = 19

{2, 2, 2, 3, 3}  for 𝑥𝑥 = 20
{1, 2, 2, 2, 3}  for 𝑥𝑥 = 21

{1, 2, 2, 3}  for 𝑥𝑥 = 22
{1, 2, 2}  for 𝑥𝑥 = 23

{1, 2}  for 𝑥𝑥 = 24 or 𝑥𝑥 = 25
{1}  for 𝑥𝑥 = 26 or 𝑥𝑥 = 27

 

 
27  See https://mathworld.wolfram.com/PartitionFunctionQ.html for information about 𝑄𝑄(𝑛𝑛). 
  See https://en.wikipedia.org/wiki/Generating_function for information about generating functions. 
  See https://en.wikipedia.org/wiki/Gaussian_binomial_coefficient for information about Gaussian binomial coefficients. 
28  See https://en.wikipedia.org/wiki/Partition_(number_theory) for information about partitions. 
29  See https://en.wikipedia.org/wiki/Dice for more information on the various physical shapes of dice. 

https://mathworld.wolfram.com/PartitionFunctionQ.html
https://en.wikipedia.org/wiki/Generating_function
https://en.wikipedia.org/wiki/Gaussian_binomial_coefficient
https://en.wikipedia.org/wiki/Partition_(number_theory)
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{10}  for 𝑥𝑥 = 0
{9}  for 𝑥𝑥 = 1 or 𝑥𝑥 = 2

{8, 9}  for 𝑥𝑥 = 3 or 𝑥𝑥 = 4
{8, 8, 9}  for 𝑥𝑥 = 5

{7, 8, 8, 9}  for 𝑥𝑥 = 6
{7, 8, 8, 8, 9}  for 𝑥𝑥 = 7

{7, 7, 8, 8, 8, 9}  for 𝑥𝑥 = 8
{7, 7, 7, 8, 8, 8, 8, 9}  for 𝑥𝑥 = 9

{6, 7, 7, 7, 7, 8, 8, 8, 8, 9}  for 𝑥𝑥 = 10
{6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8}  for 𝑥𝑥 = 11

{6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8}  for 𝑥𝑥 = 12
{6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8}  for 𝑥𝑥 = 13

{6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8}  for 𝑥𝑥 = 14
{5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8}  for 𝑥𝑥 = 15

{5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8}  for 𝑥𝑥 = 16
{5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8}  for 𝑥𝑥 = 17

{5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8}  for 𝑥𝑥 = 18
{5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8}  for 𝑥𝑥 = 19

{5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7}  for 𝑥𝑥 = 20
{4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7}  for 𝑥𝑥 = 21

{4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7}  for 𝑥𝑥 = 22
{4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7}  for 𝑥𝑥 = 23

{4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7}  for 𝑥𝑥 = 24
{4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7}  for 𝑥𝑥 = 25
{4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7}  for 𝑥𝑥 = 26

{4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7}  for 𝑥𝑥 = 27
{3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6}  for 𝑥𝑥 = 28

{3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6}  for 𝑥𝑥 = 29
{3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6}  for 𝑥𝑥 = 30

{3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6}  for 𝑥𝑥 = 31
{3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6}  for 𝑥𝑥 = 32

{3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6}  for 𝑥𝑥 = 33
{3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6}  for 𝑥𝑥 = 34

{3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5}  for 𝑥𝑥 = 35
{2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5}  for 𝑥𝑥 = 36

{2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5}  for 𝑥𝑥 = 37
{2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5}  for 𝑥𝑥 = 38

{2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5}  for 𝑥𝑥 = 39
{2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5}  for 𝑥𝑥 = 40

{2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4}  for 𝑥𝑥 = 41
{2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4}  for 𝑥𝑥 = 42

{2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4}  for 𝑥𝑥 = 43
{2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4}  for 𝑥𝑥 = 44

{1, 2, 2, 2, 2, 3, 3, 3, 3, 4}  for 𝑥𝑥 = 45
{1, 2, 2, 2, 2, 3, 3, 3}  for 𝑥𝑥 = 46

{1, 2, 2, 2, 3, 3}  for 𝑥𝑥 = 47
{1, 2, 2, 2, 3}  for 𝑥𝑥 = 48

{1, 2, 2, 3}  for 𝑥𝑥 = 49
{1, 2, 2}  for 𝑥𝑥 = 50

{1, 2}  for 𝑥𝑥 = 51 or 𝑥𝑥 = 52
{1}  for 𝑥𝑥 = 53 or 𝑥𝑥 = 54

 

The expression for 𝒞𝒞10,𝑥𝑥 clearly reveals the need for generating functions. Ten-sided dice are popular and used 
in many different games, so we’ll look a bit closer at the case 𝑓𝑓 = 10 in the next section. 

In general, with dice numbered from 1 to 𝑓𝑓, the number of possible inverted sums using 𝑛𝑛 dice is given by 

�̇�𝜎𝑓𝑓(𝑛𝑛) = �𝑘𝑘 ⋅ [𝑛𝑛 + 𝑘𝑘 > 𝑓𝑓]
𝑓𝑓

𝑘𝑘=1

 

and the inverted sums range from 𝑓𝑓(𝑓𝑓+1)
2

− �̇�𝜎𝑓𝑓(𝑛𝑛) to 𝑓𝑓(𝑓𝑓+1)
2

− 1. For instance, with four ten-sided dice, we have 
�̇�𝜎10(4) = 34 possible inverted sums (ranging from 21 to 54). When 𝑛𝑛 = 𝑓𝑓 − 1, the inverted sums range from 1 
to 𝑓𝑓(𝑓𝑓+1)

2
− 1. When 𝑛𝑛 ≥ 𝑓𝑓, the inverted sums range from 0 to 𝑓𝑓(𝑓𝑓+1)

2
− 1. 
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3.1. Using ten-faced dice 
With the notation introduced earlier, let Σ�ℛ𝑓𝑓,𝑛𝑛� denote the image of ℛf,n under Σ, in short, the image of Σ. It is 
easy to see that Σ�ℛ𝑓𝑓,𝑛𝑛� = {𝑛𝑛, 𝑛𝑛 + 1, 𝑛𝑛 + 2, …, 𝑓𝑓𝑛𝑛} and 𝜎𝜎𝑓𝑓(𝑛𝑛) = �Σ�ℛ𝑓𝑓,𝑛𝑛�� = (𝑓𝑓 − 1)𝑛𝑛 + 1. With 𝑓𝑓 = 10, we 
have Σ�ℛ10,𝑛𝑛� = {𝑛𝑛, 𝑛𝑛 + 1, 𝑛𝑛 + 2, …, 10𝑛𝑛} and 𝜎𝜎10(𝑛𝑛) = 9𝑛𝑛 + 1. 

Let Σ̇�ℛ10,𝑛𝑛� denote the image of Σ̇. The table below contains the intersection Σ�ℛ10,𝑛𝑛� ∩ Σ̇�ℛ10,𝑛𝑛� and the union 
Σ�ℛ10,𝑛𝑛� ∪ Σ̇�ℛ10,𝑛𝑛� for all 𝑛𝑛. It is informative to compare this with Table 14. 

𝑛𝑛  Σ�ℛ10,𝑛𝑛� ∩ Σ̇�ℛ10,𝑛𝑛�  Σ�ℛ10,𝑛𝑛� ∪ Σ̇�ℛ10,𝑛𝑛�  𝑛𝑛  Σ�ℛ10,𝑛𝑛� ∩ Σ̇�ℛ10,𝑛𝑛�  Σ�ℛ10,𝑛𝑛� ∪ Σ̇�ℛ10,𝑛𝑛�   
1  ∅  𝐷𝐷10 ∪ {45, 46, … , 54}  29  {29, 30, … , 54}  {0, 1, … , 290}  
2  ∅  {2, … , 20} ∪ {36, … , 54}  30  {30, 31, … , 54}  {0, 1, … , 300}  
3  {28, 29, 30}  {3, 4, … , 54}  31  {31, 32, … , 54}  {0, 1, … , 310}  
4  {21, 22, … , 40}  {4, 5, … , 54}  32  {32, 33, … , 54}  {0, 1, … , 320}  
5  {15, 16, … , 50}  {5, 6, … , 54}  33  {33, 34, … , 54}  {0, 1, … , 330}  
6  {10, 11, … , 54}  {6, 7, … , 60}  34  {34, 35, … , 54}  {0, 1, … , 340}  
7  {7, 8, … , 54}  {6, 7, … , 70}  35  {35, 36, … , 54}  {0, 1, … , 350}  
8  {8, 9, … , 54}  {3, 4, … , 80}  36  {36, 37, … , 54}  {0, 1, … , 360}  
9  {9, 10, … , 54}  {1, 2, … , 90}  37  {37, 38, … , 54}  {0, 1, … , 370}  

10  {10, 11, … , 54}  {0, 1, … , 100}  38  {38, 39, … , 54}  {0, 1, … , 380}  
11  {11, 12, … , 54}  {0, 1, … , 110}  39  {39, 40, … , 54}  {0, 1, … , 390}  
12  {12, 13, … , 54}  {0, 1, … , 120}  40  {40, 41, … , 54}  {0, 1, … , 400}  
13  {13, 14, … , 54}  {0, 1, … , 130}  41  {41, 42, … , 54}  {0, 1, … , 410}  
14  {14, 15, … , 54}  {0, 1, … , 140}  42  {42, 43, … , 54}  {0, 1, … , 420}  
15  {15, 16, … , 54}  {0, 1, … , 150}  43  {43, 44, … , 54}  {0, 1, … , 430}  
16  {16, 17, … , 54}  {0, 1, … ,160}  44  {44, 45, … , 54}  {0, 1, … , 440}  
17  {17, 18, … , 54}  {0, 1, … , 170}  45  {45, 46, … , 54}  {0, 1, … , 450}  
18  {18, 19, … , 54}  {0, 1, … , 180}  46  {46, 47, … , 54}  {0, 1, … , 460}  
19  {19, 20, … , 54}  {0, 1, … , 190}  47  {47, 48, … , 54}  {0, 1, … , 470}  
20  {20, 21, … , 54}  {0, 1, … , 200}  48  {48, 49, … , 54}  {0, 1, … , 480}  
21  {21, 22, … , 54}  {0, 1, … , 210}  49  {49, 50, … , 54}  {0, 1, … , 490}  
22  {22, 23, … , 54}  {0, 1, … , 220}  50  {50, 51, … , 54}  {0, 1, … , 500}  
23  {23, 24, … , 54}  {0, 1, … , 230}  51  {51, 52, 53, 54}  {0, 1, … , 510}  
24  {24, 25, … , 54}  {0, 1, … , 240}  52  {52, 53, 54}  {0, 1, … , 520}  
25  {25, 26, … , 54}  {0, 1, … , 250}  53  {53, 54}  {0, 1, … , 530}  
26  {26, 27, … , 54}  {0, 1, … , 260}  54  {54}  {0, 1, … , 540}  
27  {27, 28, … , 54}  {0, 1, … , 270}  𝒏𝒏 > 𝟏𝟏𝟏𝟏                          ∅           {0, 1, … , 54} ∪ {𝑛𝑛,𝑛𝑛 + 1, … , 10𝑛𝑛}  
28  {28, 29, … , 54}  {0, 1, … , 280}     

Table 16. Intersections and unions of the images Σ�ℛ10,𝑛𝑛� and Σ̇�ℛ10,𝑛𝑛�. 

The case 𝑛𝑛 = 2 has an interesting union Σ�ℛ10,2� ∪ Σ̇�ℛ10,2� consisting of two disjoint sets with 19 elements 
each. This could maybe be relevant in some game yet to be invented. But inverted sums of two-dice rolls are rather 
boring. The case 𝑛𝑛 = 9, where Σ̇�ℛ10,𝑛𝑛� = {1, 2, … , 54} and Σ�ℛ10,𝑛𝑛� ∪ Σ̇�ℛ10,𝑛𝑛� = {1, 2, … , 90} is pretty, but to 
play with nine ten-sided dice is impractical. Conclusively, Table 16 indicates that using inverted dice sums with 
ten-sided dice might not the most interesting option for game makers. However, there could still be some 
mathematical significance to be discovered. 

As an example, the probability table for a roll with three 10-faced dice is given below (the appendix contains 
Python code for calculating probabilities for 𝑛𝑛 𝑓𝑓-sided dice). It is left to the reader to find solutions to the equation 
Σ̇(R) = Σ(R) discussed in earlier sections. 

When it comes to solutions to the equation Pr�𝑛𝑛, 10, Σ̇(𝑅𝑅) = 𝑥𝑥� = Pr(𝑛𝑛, 10, Σ(𝑅𝑅) = 𝑥𝑥), for rolls with a maximum 
of 50 dice, we have the two non-trivial solutions Pr�3, 10, Σ̇(𝑅𝑅) = 28� = Pr(3, 10, Σ(𝑅𝑅) = 28) = 0.6% and 
Pr�4, 10, Σ̇(𝑅𝑅) = 29� = Pr(4, 10, Σ(𝑅𝑅) = 29) = 0.0348%. I leave it to the reader to find the corresponding rolls. 
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𝑥𝑥  Pr(3, 10,Σ(𝑅𝑅) = 𝑥𝑥)  𝑥𝑥  Pr(3, 10, Σ̇(𝑅𝑅) = 𝑥𝑥) 
3  1/1000  28  6/1000 
4  3/1000  29  6/1000 
5  6/1000  30  12/1000 
6  10/1000  31  18/1000 
7  15/1000  32  24/1000 
8  21/1000  33  30/1000 
9  28/1000  34  42/1000 

10  36/1000  35  48/1000 
11  45/1000  36  60/1000 
12  55/1000  37  66/1000 
13  63/1000  38  72/1000 
14  69/1000  39  72/1000 
15  73/1000  40  78/1000 
16  75/1000  41  72/1000 
17  75/1000  42  72/1000 
18  73/1000  43  66/1000 
19  69/1000  44  60/1000 
20  63/1000  45  49/1000 
21  55/1000  46  43/1000 
22  45/1000  47  31/1000 
23  36/1000  48  25/1000 
24  28/1000  49  19/1000 
25  21/1000  50  13/1000 
26  15/1000  51  7/1000 
27  10/1000  52  7/1000 
28  6/1000  53  1/1000 
29  3/1000  54  1/1000 
30  1/1000     
Table 17. Possible sums and inverted sums of a three-dice roll (10-sided dice), with corresponding probabilities. 

Comparing the table above with Table 8 shows that for 10-sided 3-dice rolls, we get the same near-symmetry for 
inverted sums around 𝑥𝑥 = 40 as with 6-sided 3-dice rolls around 𝑥𝑥 = 12. Symmetric probability values are marked 
in green and near-symmetric values are marked in orange above. The blue values belong to Σ�ℛ10,3� ∩ Σ̇�ℛ10,3�. 

4. A set-theoretical generalisation 
The concept of inverted sums can be applied to all multisets in a finite universe, i.e., not only multisets that relate 
to dice rolls. Let 𝑈𝑈 (a set) be the finite universe of a multiset 𝑀𝑀 with the support 𝑆𝑆.30 This means that 𝑆𝑆 ⊆ 𝑈𝑈 and 
𝑥𝑥 ∈ 𝑆𝑆 ⟺ 𝑥𝑥 ∈ 𝑀𝑀. Let 𝑀𝑀∁ = {𝑥𝑥 ∈ 𝑈𝑈 ∶ 𝑥𝑥 ∉ 𝑀𝑀} and let 𝑆𝑆∁ = {𝑥𝑥 ∈ 𝑈𝑈 ∶ 𝑥𝑥 ∉ 𝑆𝑆}. Then 𝑀𝑀∁ = 𝑆𝑆∁. Let Σ(𝑆𝑆) be the sum 
of all elements in 𝑆𝑆 (with respect to some addition operator +), i.e., 

Σ(𝑆𝑆) = �𝑥𝑥
𝑥𝑥∈𝑆𝑆

 

Now, we define the inverted sum of 𝑀𝑀 as 

Σ̇(𝑀𝑀) = � 𝑥𝑥
𝑥𝑥∈𝑀𝑀∁

= Σ(𝑈𝑈) − Σ(𝑆𝑆) 

which implies that Σ̇(𝑀𝑀) = Σ̇(𝑆𝑆). When 𝑀𝑀 is a set (or a multiset with all elements having the multiplicity 1), we 
have Σ̇(𝑀𝑀) = Σ(𝑈𝑈) − Σ(𝑀𝑀). When 𝑀𝑀∁ = ∅, we have Σ(𝑀𝑀) ≥ Σ(𝑈𝑈) and Σ̇(𝑀𝑀) = 0. 

 
30  In texts concerning multisets, the universe of a multiset is often ℕ, but that is not the case in the situation presented here. 
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If 𝑆𝑆1 and 𝑆𝑆2 are two sets such that 𝑆𝑆1 = Supp(𝑀𝑀1) and 𝑆𝑆2 = Supp(𝑀𝑀2) for two multisets 𝑀𝑀1 and 𝑀𝑀2 in the same 
universe 𝑈𝑈, then Σ̇(𝑆𝑆1 ∩ 𝑆𝑆2) = Σ(𝑈𝑈) − Σ(𝑆𝑆1 ∩ 𝑆𝑆2) and Σ̇(𝑆𝑆1 ∪ 𝑆𝑆2) = Σ(𝑈𝑈) − Σ(𝑆𝑆1 ∪ 𝑆𝑆2). I encourage the reader to 
further investigate the identities that can be deducted from this. 

As a final remark, I will mention that if 𝑈𝑈 is allowed to be an infinite set with both a lower bound and an upper 
bound (such as 𝑈𝑈 = [𝑎𝑎, 𝑏𝑏], where 𝑎𝑎, 𝑏𝑏 ∈ ℝ and 𝑎𝑎 < 𝑏𝑏), then we can define Σ̇(𝑆𝑆) for each 𝑆𝑆 ⊆ 𝑈𝑈 with the help of 
integrals, where∫ 𝑥𝑥 𝑑𝑑𝑥𝑥𝑏𝑏

𝑎𝑎  is the integral analogue of the sum Σ(𝑈𝑈). I leave it to the reader to investigate this. 

5. About this paper 
If you have read this far, you might have noticed that this text does not contain a lot of what could be described as 
real math. There are no formal definitions, theorems, corollaries etc., and that structure is chosen purposely, since 
the text is, above all, meant to be inspirational. I have attempted to use the correct terminology from the subfields 
of mathematics that the text refers to (mainly set theory, partition theory, and probability theory). The main target 
audience consists of dice game developers, mathematicians, and maybe also computer scientists. 

The concept of “inverted dice sums” is relatively new (I invented it in 2013 in connection with the development 
of the game Inverted Dice™), and there is much yet to be written on the subject. However, I do not have the time 
to pursue it any further. My hope is that somebody else will treat it with the theoretical stringency it deserves.  

The content has not undergone peer review (nor has it been proofread), as I am currently not affiliated with any 
mathematical community. Consequently, it is reasonable to assume that I may have made a few mistakes. I hope 
that these mistakes are of minimal significance and do not overshadow the ideas presented here. I encourage my 
readers to reach out to me if they come across any irregularities in the text, and particularly if they can contribute 
with more simple versions of the probability formulas. My e-mail address is information@simonjensen.com. 

This is version 1.2 of this paper, published the 26th of January 2024 at my website www.simonjensen.com. If any 
typographical errors, logical errors, or other kinds of flaws are discovered, the text will be updated. Maybe, at some 
point, I will include more information about generating functions. The latest version of this paper will always be 
available at https://www.simonjensen.com/pdf/A_short_introduction_to_the_theory_of_inverted_dice_sums.pdf. 
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Appendix 
The Python code below can be used to calculate the probabilities for inverted dice sums. 
from math import comb # comb(n,k) gives binomal coefficient "n choose k" 
from math import floor 
from itertools import chain, combinations 
 
def powerset_plus(iterable): # list(powerset_plus(A)) produces list of all non-empty subsets of A (as tuples) 
    s = list(iterable) 
    return chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1)) 
 
def probabilities(f,n): 
    o_x=list([] for _ in range(0, sum_D)) 
    o_y=list([] for _ in range(0, f*n+1)) 
    print("\nProbabilities for inverted sums, Pr(f,n,Ṡigma(R)=x):") 
    for x in range(0, sum(D)): 
        o_x[x]=0 
        for c in C_x[x]: 
            for i in range(0, c + 1): 
                o_x[x]+=(-1)**(c-i)*comb(c,i)*(i**n) 
        if not o_x[x]==0: 
            print(f"Pr({n},{f},Ṡigma(R)={x}) = {o_x[x]}/{f**n} ≈ {int((10**(n+2))*o_x[x]/(f**n))/(10**n)}%") 
    print("\nProbabilities for regular sums, Pr(n,f,Sigma(R)=x):") 
    for y in range(n, f*n+1): 
        o_y[y]=0 
        for a in range(0, floor((y-n)/f)+1): 
            o_y[y]+=(-1)**(a)*comb(n,a)*comb(y-a*f-1,n-1) 
        if not o_y[y]==0: 
            print(f"Pr({n},{f},Sigma(R)={y}) = {o_y[y]}/{f**n} ≈ {int((10**(n+2))*o_y[y]/(f**n))/(10**n)}%") 
    print(f"\nSolutions to Pr({n},{f},Ṡigma(R)=x) = Pr({n},{f},Sigma(R)=x):") 
    no_solutions=True 
    for x in range(0, sum_D): 
        for y in range(n, f*n+1): 
            if x==y and o_x[x]==o_y[y]: 
                print(f"Pr({n},{f},Ṡigma(R)={x}) = Pr({n},{f},Sigma(R)={y}) = {o_x[x]}/{f**n}") 
                no_solutions=False 
    if no_solutions: 
        print("None!") 
 
f = int(input("Faces on each die (f): ")) 
N = int(input("Number of dice (n) (program will be is looping from 1 to n): ")) 
print(f"---------------------\nUsing {f}-faced dice):\n---------------------") 
D = list(range(1, f + 1)) 
sum_D = sum(D) 
print(f"D = {D}\nΣ(D)={sum_D}") 
S_f_n = list(powerset_plus(D)) 
C_x=list([] for _ in range(0, sum_D)) 
print(f"\nS_{f} = {S_f_n}") 
print(f"\n|S_{f}| = {len(S_f_n)}\n") 
for S in S_f_n: 
    C_x[sum_D-sum(S)].append(len(S)) 
for x in range(0, sum(D)): 
    print(f"C_{f}_{x} = {C_x[x]}") 
print("\n") 
for n in range(1,N+1): 
    print(f"\nRolls with {n} dice):\n--------------------") 
    sigma_overdot_f=0 
    for k in range(1,f+1): 
        if n+k>f: 
            sigma_overdot_f+=k 
    print(f"Number of possible inverted sums: {sigma_overdot_f}") 
    image_Sigma=set(range(n,f*n+1)) 
    image_Sigma_overdot=set(range(sum_D-sigma_overdot_f,sum_D)) 
    images_intersection=image_Sigma.intersection(image_Sigma_overdot) 
    images_union=image_Sigma.union(image_Sigma_overdot) 
    print(f"Intersection of images: {images_intersection}") 
    print(f"Union of images: {images_union}") 
    probabilities(f,n) 
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