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Abstract 
It has been conjectured that the sequence of integers whose product of (positive) divisors is 
larger than that of any smaller number (OEIS A034287) is identical to the sequence of 
largely composite numbers (OEIS A067128). This paper approaches this conjecture. 
Furthermore, the summatory function 𝛲𝛲(𝑛𝑛) is defined as the sum of the 𝑛𝑛 first divisor 
products (extended to include negative divisors), see OEIS A224914. It is conjectured that 
𝛲𝛲(𝑛𝑛) > 0 for all 𝑛𝑛 > 47. Two new concepts, highly divisorial-positive numbers and highly 
divisorial-negative numbers, are introduced.  

https://www.simonjensen.com/texts/#mathematics
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On an extended divisor product summatory function 
(accumulation of products of all divisors, positive and negative) 

1. Background 
In mathematical number theory, a divisor function is an arithmetic function related to the divisors of integers. 

The sum of positive divisors function σ𝑥𝑥(𝑛𝑛), for a real (or complex) number 𝑥𝑥, is defined as the sum of the 𝑥𝑥th 
powers of the positive divisors of 𝑛𝑛. It can be expressed in sigma notation as 

σ𝑥𝑥(𝑛𝑛) =  �𝑑𝑑𝑥𝑥
𝑑𝑑|𝑛𝑛

 

where 𝑛𝑛 > 0, 𝑑𝑑 > 0, and 𝑑𝑑|𝑛𝑛 is shorthand for “𝑑𝑑 divides 𝑛𝑛” (which means that 𝑛𝑛 = 𝑚𝑚 ⋅ 𝑑𝑑 for some 𝑚𝑚 ∈ ℕ). 

When 𝑥𝑥 is 0, the function σ𝑥𝑥(𝑛𝑛) is referred to as the number-of-divisors function or simply the divisor function. 
The notations 𝑑𝑑(𝑛𝑛), 𝜈𝜈(𝑛𝑛), and 𝜏𝜏(𝑛𝑛), are often used instead of σ0(𝑛𝑛), but I will use σ0(𝑛𝑛) here:1 

σ0(𝑛𝑛) =  �1
𝑑𝑑|𝑛𝑛

 

σ0(𝑛𝑛) counts the number of (positive) divisors 𝑑𝑑 of 𝑛𝑛. For 𝑛𝑛 = 1, 2, 3, …, the first few values of σ0(𝑛𝑛) are 
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, …  (sequence A000005 in OEIS). 

Lemma 1. If 𝑛𝑛 is non-square positive integer, then σ0(𝑛𝑛) is even. If 𝑛𝑛 is a square number, then σ0(𝑛𝑛) is odd. 
Proof. The proof is well-known. Let 𝑛𝑛 be a positive integer. According to the fundamental theorem of arithmetic, 𝑛𝑛 has 
a unique prime factorization, so 𝑛𝑛 = 𝑝𝑝1

𝑎𝑎1𝑝𝑝2
𝑎𝑎2 … 𝑝𝑝𝑟𝑟

𝑎𝑎𝑟𝑟 for some primes 𝑝𝑝𝑖𝑖  with exponents 𝑎𝑎𝑖𝑖 (𝑖𝑖 = 1, 2, … , 𝑟𝑟). All positive 
divisors of 𝑛𝑛 must then be of the form 𝑝𝑝1

𝑏𝑏1𝑝𝑝2
𝑏𝑏2 … 𝑝𝑝𝑟𝑟

𝑏𝑏𝑟𝑟, where 0 ≤ 𝑏𝑏𝑖𝑖 ≤ 𝑎𝑎𝑖𝑖 , otherwise they would not be divisors of 𝑛𝑛. 
Since 0 ≤ 𝑏𝑏𝑖𝑖 ≤ 𝑎𝑎𝑖𝑖, we have 𝑎𝑎𝑖𝑖 + 1 possible values for each exponent 𝑏𝑏𝑖𝑖. Thus, the total number of divisors is 
σ0(𝑛𝑛) = (𝑎𝑎1 + 1)(𝑎𝑎2 + 1) … (𝑎𝑎𝑟𝑟 + 1). For σ0(𝑛𝑛) to be odd, all its factors 𝑎𝑎𝑖𝑖 + 1 must be odd, so all 𝑎𝑎𝑖𝑖 must be even 
(let’s say that 𝑎𝑎𝑖𝑖 = 2𝑚𝑚𝑖𝑖, where each 𝑚𝑚𝑖𝑖 is a positive integer), and thus, 𝑛𝑛 = 𝑝𝑝1

2𝑚𝑚1𝑝𝑝2
2𝑚𝑚2 … 𝑝𝑝𝑟𝑟

2𝑚𝑚𝑟𝑟 = �𝑝𝑝1
𝑚𝑚1𝑝𝑝2

𝑚𝑚2 … 𝑝𝑝𝑟𝑟
𝑚𝑚𝑟𝑟�2 

is a perfect square. Consequently, the number of all positive divisors of an integer is always even, except when the integer is 
a perfect square. ∎ 

When 𝑥𝑥 is 1, the function σ𝑥𝑥(𝑛𝑛) above is called the sigma function or sum-of-divisors function, and the subscript 
is often omitted, so σ(𝑛𝑛) is equivalent to σ1(𝑛𝑛): 

σ(𝑛𝑛) =  �𝑑𝑑
𝑑𝑑|𝑛𝑛

 

By analogy with this sum-of-divisors function, let 

𝜋𝜋(𝑛𝑛) =  �𝑑𝑑
𝑑𝑑|𝑛𝑛

 

denote the product of the positive divisors 𝑑𝑑 of 𝑛𝑛 (including 𝑛𝑛 itself).2 For 𝑛𝑛 = 1, 2, 3, …, the first values are 1, 
2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, …  (OEIS sequence A007955). 

Lemma 2. The divisor product 𝜋𝜋(𝑛𝑛), as defined above, satisfies the identity 𝜋𝜋(𝑛𝑛) =  �𝑛𝑛σ0(𝑛𝑛). 
Proof. The proof is well-known. Let 𝑛𝑛 be a positive integer and the positive divisors of 𝑛𝑛 be 𝑑𝑑1 < 𝑑𝑑2 < ⋯  < 𝑑𝑑𝑡𝑡, where 
𝑡𝑡 = σ0(𝑛𝑛). The trick is to pair these sorted divisors, in a way so that each pair consists of two divisors whose product is 𝑛𝑛. 

 
1  The denotation 𝜏𝜏(𝑛𝑛) comes from the German word Teiler, meaning divisor. It can be confused with the Ramanujan tau function. 
  Thus, 𝜏𝜏(𝑛𝑛) might be a poor choice. In this text, I use 𝑑𝑑 as denotation for the divisors of a number, so 𝑑𝑑(𝑛𝑛) would also be confusing here. 
2  I have chosen the denotation 𝜋𝜋(𝑛𝑛) for the divisor product to highlight its relation to the pi notation (Π) used in its definition, the 
  same way the denotation σ(𝑛𝑛) relates to the sigma notation (Σ). The denotation 𝜋𝜋(𝑛𝑛) is somewhat unfortunate, since it is also 
  commonly used for the prime counting function, and it has absolutely no relation to the constant 𝜋𝜋. But it is commonly accepted 
  (I borrowed it from Wolfram MathWorld). I have seen several other denotations for divisor products, such as 𝑇𝑇(𝑛𝑛) (Sándor, 2009),  
  and 𝑓𝑓(𝑛𝑛) (Šalát & Tomanová, 2002). 

http://en.wikipedia.org/wiki/Divisor
https://oeis.org/A000005
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
https://oeis.org/A007955
https://mathworld.wolfram.com/TauFunction.html
https://mathworld.wolfram.com/PrimeCountingFunction.html
https://mathworld.wolfram.com/DivisorProduct.html
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Obviously, 𝑑𝑑1𝑑𝑑𝑡𝑡 = 𝑛𝑛, since 𝑑𝑑1 and 𝑑𝑑𝑡𝑡 are the trivial divisors 1 and 𝑛𝑛, respectively. The next pair consists of 𝑑𝑑2 and 𝑑𝑑𝑡𝑡−1, 
with the product 𝑑𝑑2𝑑𝑑𝑡𝑡−1 = 𝑛𝑛, and so on (the symmetry arises from the fact that the divisors are sorted, and, strictly speaking, 
from the commutativity of multiplication). If 𝑛𝑛 is not a square integer, 𝑡𝑡 is even, according to Lemma 1. 
In this case, the last pair of divisors will be 𝑑𝑑𝑡𝑡

2
 and 𝑑𝑑1+𝑡𝑡2

, with the product 𝑑𝑑𝑡𝑡
2
𝑑𝑑1+𝑡𝑡2

= 𝑛𝑛, and we get 𝑡𝑡
2
 products, all equal to 𝑛𝑛. 

When multiplying these, we get the desired result, 𝑑𝑑1𝑑𝑑2 … 𝑑𝑑𝑡𝑡 = 𝑛𝑛
𝑡𝑡
2. When 𝑛𝑛 is a square integer, 𝑡𝑡 is odd, so the last pair 

will consist of 𝑑𝑑𝑡𝑡−1
2

 and 𝑑𝑑2+𝑡𝑡−12
. Multiplication of these 𝑡𝑡−1

2
 pairs (all equal to 𝑛𝑛), together with the middle divisor 𝑑𝑑1+𝑡𝑡−12

, 

which is √𝑛𝑛 (due to the symmetry), yields 𝑑𝑑1𝑑𝑑2 …𝑑𝑑𝑡𝑡 = 𝑛𝑛
𝑡𝑡−1
2 ∙ √𝑛𝑛 = 𝑛𝑛

1
2 + 𝑡𝑡−12 = 𝑛𝑛

𝑡𝑡
2. Since 𝑡𝑡 = σ0(𝑛𝑛), we have shown that 

𝜋𝜋(𝑛𝑛) =  �𝑛𝑛σ0(𝑛𝑛) for both even and odd integers. ∎ 

2. The extended divisor product 
In many situations, only the positive divisors of a positive integer, 𝑛𝑛, are of relevance (and sometimes only the 
proper divisors). There are several reasons for this, not least that the symmetric nature of positive versus negative 
divisors makes the sum-of-divisors function σ1(𝑛𝑛) yield 0 for all 𝑛𝑛 when its domain is extended to include negative 
divisors. When it comes to divisor products, it is more interesting to include negative divisors. 

Let us first have a look at the number of all divisors (negative and positive). For 𝑛𝑛 = 1, 2, 3, …, the first values 
are 2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 4, 12, 4, 8, … (OEIS sequence A062011). This sequence is generated simply by 
doubling the function σ0(𝑛𝑛): 

2σ0(𝑛𝑛) = 2�𝑑𝑑0
𝑑𝑑|𝑛𝑛

= 2�1
𝑑𝑑|𝑛𝑛

=  � 1
𝑑𝑑∗|𝑛𝑛

 

where 𝑑𝑑∗ ∈ ℤ∗, and 𝑑𝑑∗|𝑛𝑛 is shorthand for “𝑑𝑑∗ divides 𝑛𝑛”.3 

Let us now look at the product of all divisors, both positive and negative, which I have denoted 𝜋𝜋∗(𝑛𝑛):4 

𝜋𝜋∗(𝑛𝑛) =  �𝑑𝑑∗
𝑑𝑑∗|𝑛𝑛

 

This extended divisor product (i.e., the product of all divisors 𝑑𝑑∗ of 𝑛𝑛) satisfies the identity 

𝜋𝜋∗(𝑛𝑛) = (−𝑛𝑛)σ0(𝑛𝑛) 

where σ0(𝑛𝑛), as usual, is the number of positive divisors d of n. The proof is trivial. For 𝑛𝑛 = 1, 2, 3, …, the 
first values of 𝜋𝜋∗(𝑛𝑛) are −1, 4, 9, −64, 25, 1296, 49, 4096, −729, 10000, 121, … (OEIS sequence A217854). 

Definition 1. Let 𝑛𝑛 be a positive integer such that 𝜋𝜋∗(𝑛𝑛) < 0. Then 𝑛𝑛 is called a divisorial-negative number. Let 
𝑛𝑛 be a positive integer such that 𝜋𝜋∗(𝑛𝑛) > 0. Then 𝑛𝑛 is called a divisorial-positive number. 5 

We see that 𝜋𝜋∗(𝑛𝑛) is negative if and only if 𝑛𝑛 is a square number (it follows directly from Lemma 1). 
So, square numbers are divisorial-negative. All other natural numbers are divisorial-positive. 

Definition 2. Let 𝑛𝑛 be a positive integer such that 𝜋𝜋∗(𝑛𝑛) < 𝜋𝜋∗(𝑘𝑘) for all positive 𝑘𝑘 < 𝑛𝑛. Then 𝑛𝑛 is called a highly 
divisorial-negative number.6 Let 𝑛𝑛 be a positive integer such that 𝜋𝜋∗(𝑛𝑛) > 𝜋𝜋∗(𝑘𝑘) for all positive 𝑘𝑘 < 𝑛𝑛. Then 𝑛𝑛 is 
called a highly divisorial-positive number. 

 
3  ℤ∗ is the set {𝑥𝑥 ∈ ℤ | 𝑥𝑥 ≠ 0} = ℤ ∖ {0}. Since we look at both positive and negative divisors 𝑑𝑑∗ ∈ ℤ∗, I use a superscript asterisk to 
  distinguish 𝑑𝑑∗ from 𝑑𝑑. 
4  Since 𝑑𝑑∗ ∈ ℤ∗, using a superscript asterisk (i.e., 𝜋𝜋∗ instead of 𝜋𝜋∗) would have been a better way to distinguish 𝜋𝜋∗(𝑛𝑛) from 𝜋𝜋(𝑛𝑛). 
  But the denotation σ∗(𝑛𝑛) is standard for the sum-of-unitary-divisors function, so 𝜋𝜋∗(𝑛𝑛) would instead be an appropriate denotation 
  for a product-of-unitary-divisors function. Thus, 𝜋𝜋∗(𝑛𝑛) will have to do here. 
5  The terms divisorial-negative and divisorial-positive are chosen because the (positive) divisor product 𝜋𝜋(𝑛𝑛) is sometimes, but not 
  often, called the divisorial of 𝑛𝑛 (see https://oeis.org/wiki/Divisorial). The extended divisor product 𝜋𝜋∗(𝑛𝑛) can be both positive and 
  negative, so while divisor product is an established term for the product of positive divisors, I suggest that divisorial is used for 𝜋𝜋∗(𝑛𝑛). 
  Then, divisorial-negative and divisorial-positive simply refers to numbers with negative and positive divisorials, respectively. 
6  I use the adjective highly in the same way it is used in several other divisor-related definitions (for instance that of highly composite 
  numbers). 

http://oeis.org/A062011
http://oeis.org/A217854
https://oeis.org/wiki/Divisorial
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It is easy to see, that all highly divisorial-negative numbers are also divisorial-negative, and all highly divisorial-
positive numbers are also divisorial-positive. The integer 1 is a square number, so it is divisorial-negative and 
included in the set of all highly divisorial-negative numbers. It is not regarded as highly divisorial-positive. 

The first highly divisorial-negative numbers are 1, 4, 9, 16, 36, 100, 144, 324, 400, 576, 900, 1764, 2304, 
3600, 7056, 8100, 14400, 28224, 32400, 44100, 57600, 108900, … (OEIS sequence A363657). 

The first highly divisorial-positive numbers are 2, 3, 5, 6, 8, 10, 12, 18, 20, 24, 30, 40, 42, 48, 60, 72, 84, 90, 
96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, … (OEIS sequence A363658). 

I suggest further studies of highly divisorial-negative and highly divisorial-positive numbers. How are they 
related to abundant numbers, highly abundant numbers, perfect numbers, highly totient numbers, smooth 
numbers, rough numbers, and the primes themselves (just to mention a few categories)? These are interesting 
questions. This paper does not go into detail about all this. What follows are some observations regarding the 
relation to highly composite numbers. 

Definition 3. A highly composite number is a natural number which has more positive divisors than any lower 
natural number, i.e., a positive integer 𝑛𝑛 such that σ0(𝑛𝑛) > σ0(𝑘𝑘) for all positive 𝑘𝑘 < 𝑛𝑛. 
A largely composite number is a positive integer 𝑛𝑛 such that σ0(𝑛𝑛) ≥ σ0(𝑘𝑘) for all positive 𝑘𝑘 < 𝑛𝑛. 

The first highly composite numbers are 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 
1680, 2520, 5040, … (OEIS sequence A002182). The first largely composite numbers are 1, 2, 3, 4, 6, 8, 10, 
12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, … (OEIS sequence A067128). It is obvious that all highly 
composite numbers are also largely composite. 

Lemma 3. All highly composite numbers (except 1, 4 and 36) are highly divisorial-positive. 
Proof. Let 𝑛𝑛 be a highly composite number (not 1, 4 or 36) with the unique prime factorization 𝑝𝑝1

𝑎𝑎1𝑝𝑝2
𝑎𝑎2 … 𝑝𝑝𝑟𝑟

𝑎𝑎𝑟𝑟  for some primes 
𝑝𝑝𝑖𝑖  with positive exponents 𝑎𝑎𝑖𝑖 (𝑖𝑖 = 1, 2, … , 𝑟𝑟), where 𝑎𝑎1 ≥ 𝑎𝑎2 ≥ ⋯ ≥ 𝑎𝑎𝑟𝑟  and 𝑝𝑝1 < 𝑝𝑝2 < ⋯ < 𝑝𝑝𝑟𝑟. Using the argument 
from the proof of Lemma 1, the number of divisors is σ0(𝑛𝑛) = (𝑎𝑎1 + 1)(𝑎𝑎2 + 1) … (𝑎𝑎𝑟𝑟 + 1). It has been proved that 𝑎𝑎𝑟𝑟  
must equal 1, except when 𝑛𝑛 ∈ {1,4,36} (Ramanujan 1915). Consequently, σ0(𝑛𝑛) is even, and thus 𝜋𝜋∗(𝑛𝑛) = (−𝑛𝑛)σ0(𝑛𝑛) = 𝑛𝑛σ0(𝑛𝑛) 
is clearly positive. According to the definition of highly composite numbers, σ0(𝑘𝑘) < σ0(𝑛𝑛) for all positive 𝑘𝑘 < 𝑛𝑛. For all 𝑘𝑘 
with odd σ0(𝑘𝑘), we see that 𝜋𝜋∗(𝑘𝑘) = (−𝑘𝑘)σ0(𝑘𝑘) < 𝑛𝑛σ0(𝑛𝑛) = 𝜋𝜋∗(𝑛𝑛) because (−𝑘𝑘)σ0(𝑘𝑘) is negative, and 𝑛𝑛σ0(𝑛𝑛) is positive. For all 
𝑘𝑘 with even σ0(𝑘𝑘), we see that (−𝑘𝑘)σ0(𝑘𝑘) = 𝑘𝑘σ0(𝑘𝑘), and 𝑘𝑘σ0(𝑘𝑘) < 𝑛𝑛σ0(𝑛𝑛), since 𝑘𝑘 < 𝑛𝑛, and σ0(𝑘𝑘) < σ0(𝑛𝑛). 
The only square highly composite numbers are 1, 4 and 36 (Ramanujan 1915), and thus they are divisorial-negative. 
All other highly composite numbers are highly divisorial-positive. ∎ 

Theorem 1. All largely composite numbers (except 1, 4 and 36) are highly divisorial-positive. 
Proof. Let 𝑛𝑛 be a largely composite number. If 𝑛𝑛 is highly composite, 𝑛𝑛 is highly divisorial-positive (Lemma 3). Suppose 𝑛𝑛 is 
not highly composite. If 𝑛𝑛 is non-square, σ0(𝑛𝑛) is even, and the line of reasoning used in the previous proof can be applied 
again (since for all 𝑎𝑎,𝑏𝑏, if 𝑎𝑎 < 𝑏𝑏 then 𝑎𝑎 ≤ 𝑏𝑏), which shows that n is highly divisorial-positive. It is obvious that 𝑛𝑛 
cannot be a square number, because there must exist a highly composite number 𝑚𝑚 < 𝑛𝑛, such that σ0(𝑚𝑚) = σ0(𝑛𝑛), 
otherwise 𝑛𝑛 would be highly composite, and m cannot be square (unless it is 1, 4 or 36), because, as in the former proof, 
its largest prime factor has an exponent that equals 1 (Ramanujan 1915). ∎ 

The highly divisorial-negative numbers are all square numbers, so only three of them (1, 4 and 36) are largely 
composite (a consequence of Theorem 1). 

When it comes to the highly divisorial-positive numbers, all of them are largely composite, except 5, 40 and 42 
(see Theorem 2 below). 

Lemma 4. Let 𝑛𝑛 be a highly composite number. Then there exist a highly composite number 𝑡𝑡 such that 
𝑛𝑛 < 𝑡𝑡 ≤ 2𝑛𝑛. 
Proof. The proof is well-known (Alaoglu & Erdős 1944). Let the unique prime factorization of 𝑛𝑛 be 𝑝𝑝1

𝑎𝑎1𝑝𝑝2
𝑎𝑎2 …  𝑝𝑝𝑟𝑟

𝑎𝑎𝑟𝑟 for some 
primes 𝑝𝑝𝑖𝑖  with positive exponents 𝑎𝑎𝑖𝑖 (𝑖𝑖 = 1, 2, … , 𝑟𝑟), where 𝑎𝑎1 ≥ 𝑎𝑎2 ≥ ⋯ ≥ 𝑎𝑎𝑟𝑟  and 𝑝𝑝1 < 𝑝𝑝2 < ⋯ < 𝑝𝑝𝑟𝑟.  
Then, σ0(𝑛𝑛) = (𝑎𝑎1 + 1)(𝑎𝑎2 + 1) … (𝑎𝑎𝑟𝑟 + 1), according to the argument from the proof of Lemma 1. Since 𝑛𝑛 is highly composite, 
𝑝𝑝1 equals 2, and it is clearly sufficient to increase 𝑎𝑎1 by 1 (i.e., multiplying 𝑛𝑛 by 2) to get a number with more divisors than 𝑛𝑛. ∎ 

Theorem 2. All highly divisorial-positive numbers (except 5, 40 and 42) are largely composite. 

https://oeis.org/A363657
https://oeis.org/A363658
https://oeis.org/A002182
https://oeis.org/A067128
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Proof outline. Let 𝑛𝑛 be a highly divisorial-positive number (not 5, 40 or 42). Assume that 𝑛𝑛 is not largely composite. This 
implies that σ0(𝑘𝑘) > σ0(𝑛𝑛) for one or more positive 𝑘𝑘 < 𝑛𝑛, since σ0(𝑘𝑘) ≤ σ0(𝑛𝑛) for all 𝑘𝑘 < 𝑛𝑛 would contradict 𝑛𝑛 not being 
largely composite. In other words, the set 𝑀𝑀 = {𝑘𝑘 ∈ ℕ: 𝑘𝑘 < 𝑛𝑛 ∧ σ0(𝑘𝑘) > σ0(𝑛𝑛)} cannot be empty. Now, from 𝑀𝑀 we create a 
subset 𝐻𝐻 = {ℎ ∈ 𝑀𝑀:σ0(ℎ) ≥ σ0(𝑖𝑖) for all 𝑖𝑖 ∈ 𝑀𝑀}. The set 𝐻𝐻 contains all the elements in 𝑀𝑀 with the highest number of 
divisors. 𝐻𝐻 cannot be empty, since 𝑀𝑀 is not empty (and obviously σ0(ℎ) ≥ σ0(𝑖𝑖), when 𝑖𝑖 = ℎ), and all elements in 𝐻𝐻 have 
the same number of divisors, i.e., σ0(min(𝐻𝐻)) = σ0(𝑗𝑗) = σ0(max(𝐻𝐻)) for all 𝑗𝑗 ∈ 𝐻𝐻.7 Furthermore, all elements in 𝐻𝐻 are 
largely composite, because if there were an element in 𝐻𝐻 that were not largely composite, that would imply the existence of a 
number 𝑤𝑤 ∉ 𝑀𝑀, such that 𝑤𝑤 < 𝑛𝑛 and σ0(𝑤𝑤) > σ0(𝑛𝑛), which contradicts of definition of 𝑀𝑀. The smallest element in 𝐻𝐻, 
min(𝐻𝐻), is highly composite, according to Definition 3. Let 𝑚𝑚 = min(𝐻𝐻) be the minimal element of 𝐻𝐻. Lemma 4 tells us 
that there exist a highly composite number, say 𝑡𝑡, such that 𝑚𝑚 < 𝑡𝑡 ≤ 2𝑚𝑚. Since min(𝐻𝐻) is the only highly composite number 
in 𝐻𝐻, we see that 𝑚𝑚 < 𝑡𝑡 < 𝑛𝑛 is impossible, so 𝑡𝑡 ≥ 𝑛𝑛. Thus, assuming 2𝑚𝑚 < 𝑛𝑛 leads to a contradiction. Then, assuming 2𝑚𝑚 =
𝑛𝑛 contradicts 𝑛𝑛 not being largely composite, since 2𝑚𝑚 would have to be largely composite with 𝑡𝑡 = 2𝑚𝑚 = 𝑛𝑛. Thus, 𝑛𝑛 < 2𝑚𝑚. 

 
Since 𝑚𝑚 is highly composite, Lemma 3 tells us that 𝑚𝑚 is divisorial-positive. Since both 𝑚𝑚 and 𝑛𝑛 are divisorial-positive 
(thus, non-square), they both have an even number of divisors, i.e., σ0(𝑚𝑚) and σ0(𝑛𝑛) are both even, so σ0(𝑚𝑚) > σ0(𝑛𝑛) + 1, 
and 𝜋𝜋∗(𝑚𝑚) = (−𝑚𝑚)σ0(𝑚𝑚) = 𝑚𝑚σ0(𝑚𝑚), and 𝜋𝜋∗(𝑛𝑛) = (−𝑛𝑛)σ0(𝑛𝑛) = 𝑛𝑛σ0(𝑛𝑛). Because σ0(𝑛𝑛) + 1 < σ0(𝑚𝑚), clearly both 
𝑚𝑚σ0(𝑛𝑛)+1 < 𝑚𝑚σ0(𝑚𝑚) and 𝑛𝑛σ0(𝑛𝑛) < 𝑛𝑛σ0(𝑚𝑚)−1. Now, since 𝑛𝑛 is highly divisorial-positive, 𝜋𝜋∗(𝑘𝑘) < 𝜋𝜋∗(𝑛𝑛) for all positive 
𝑘𝑘 < 𝑛𝑛. When 𝑘𝑘 = 𝑚𝑚, we get the inequalities 𝑚𝑚σ0(𝑛𝑛)+1 < 𝑚𝑚σ0(𝑚𝑚) = 𝜋𝜋∗(𝑚𝑚) < 𝜋𝜋∗(𝑛𝑛) = 𝑛𝑛σ0(𝑛𝑛) < 𝑛𝑛σ0(𝑚𝑚)−1. 
To summarize, we have the following system of inequalities: 

�
 𝑚𝑚σ0(𝑛𝑛)+1 < 𝑛𝑛σ0(𝑚𝑚)−1

σ0(𝑛𝑛) + 1 < σ0(𝑚𝑚) 
0 < 𝑚𝑚 < 𝑛𝑛 < 2𝑚𝑚     

 

Solving this system gives us two integer solutions: 𝑛𝑛 = 7 (with 𝑚𝑚 = 6) and 𝑛𝑛 = 692 (with 𝑚𝑚 = 686).8 We have a 
contradiction, since neither 7 nor 692 is a highly divisorial-positive number, but 𝑛𝑛 is highly divisorial-positive. So, the 
assumption that that 𝑛𝑛 is not largely composite leads to a contradiction. Conclusively, 𝑛𝑛 is largely composite. The number 4 
is largely composite with σ0(4) = 3, but since 𝜋𝜋∗(4) = −64 is negative, 4 is not included in the highly divisorial-positive 
numbers. Instead, 5 takes its place with σ0(5) = 2. The same goes for 36 (replaced by both 40 and 42). (∎) 

Corollary 1. The largest highly divisorial-positive number that is not largely composite is 42. 
Proof. It follows directly from Theorem 2. I couldn't resist writing this equivalent version as a separate statement.9 ∎ 

Theorem 1 together with Theorem 2 implies that the sequence of all largely composite numbers from the 14th 
term (the number 48) is identical to the sequence of all highly divisorial-positive numbers from the 14th term 
(also 48) and forth. So, the highly divisorial-positive numbers are essentially the same as the largely composite 
numbers. This is an important relationship between the number of divisors and the divisor product.  

It has been proved that there exist infinitely many highly composite numbers (Ramanujan 1915). Thus, according to 
Lemma 3, there exist infinitely many divisorial-positive numbers.10 Interestingly, it is a proven fact, that only a 
finite number of highly abundant numbers can be highly composite (Alaoglu & Erdős 1944).11 
So, only a finite number of highly abundant numbers can be highly divisorial-positive. 

 
7  I use 𝑚𝑚𝑖𝑖𝑛𝑛(𝐻𝐻) and 𝑚𝑚𝑎𝑎𝑥𝑥(𝐻𝐻) a bit intuitively here, but since 𝐻𝐻 is a totally ordered set, the minimal element of 𝐻𝐻 and the maximal 
   element of 𝐻𝐻 are the same as the greatest element of 𝐻𝐻 and the least element of 𝐻𝐻, respectively. So, no confusion should arise. 
8  I took a shortcut (hence the Proof outline part), and found the solutions with Wolfram Mathematica using the Solve function: 
  Solve[m^(DivisorSigma[0,n]+1)<n^(DivisorSigma[0,m]-1) && DivisorSigma[0,n]<DivisorSigma[0,m]-1 && 0<m<n<2*m, n] 
  I also ran various tests to ensure that Solve had not missed any larger solutions. 
9  All readers of Douglas Adams’ novel The Hitchhiker's Guide to the Galaxy (1979) know why. 
10  This can also be shown by means of the unboundedness of  σ0(𝑛𝑛), which might be a more profound way to take. 
11  A highly abundant number is a positive integer 𝑛𝑛 such that σ1(𝑛𝑛) > σ1(𝑘𝑘) for all positive 𝑘𝑘 < 𝑛𝑛. 

https://www.wolframcloud.com/
https://en.wikipedia.org/wiki/Bounded_function
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Table 1 below shows the first 132 highly divisorial-positive numbers (𝑛𝑛) and their values of σ0(𝑛𝑛). An X in the 
HCN-column means that 𝑛𝑛 is highly composite. The table contains all highly divisorial-positive numbers with 
less than 500 positive divisors. It was produced with the Python script given in Appendix A. 

𝒏𝒏  𝛔𝛔𝟎𝟎(𝒏𝒏)  HCN  𝒏𝒏  𝛔𝛔𝟎𝟎(𝒏𝒏)  HCN  𝒏𝒏  𝛔𝛔𝟎𝟎(𝒏𝒏)  HCN  𝒏𝒏  𝛔𝛔𝟎𝟎(𝒏𝒏)  HCN 
2 2 X  672 24   42840 96   831600 240  
3 2   720 30 X  43680 96   942480 240  
5 2   840 32 X  45360 100 X  982800 240  
6 4 X  1080 32   50400 108 X  997920 240  
8 4   1260 36 X  55440 120 X  1053360 240  
10 4   1440 36   65520 120   1081080 256 X 
12 6 X  1680 40 X  75600 120   1330560 256  
18 6   2160 40   83160 128 X  1413720 256  
20 6   2520 48 X  98280 128   1441440 288 X 
24 8 X  3360 48   110880 144 X  1663200 288  
30 8   3780 48   131040 144   1801800 288  
40 8   3960 48   138600 144   1884960 288  
42 8   4200 48   151200 144   1965600 288  
48 10 X  4320 48   163800 144   2106720 288  
60 12 X  4620 48   166320 160 X  2162160 320 X 
72 12   4680 48   196560 160   2827440 320  
84 12   5040 60 X  221760 168 X  2882880 336 X 
90 12   7560 64 X  262080 168   3326400 336  
96 12   9240 64   277200 180 X  3603600 360 X 
108 12   10080 72 X  327600 180   4324320 384 X 
120 16 X  12600 72   332640 192 X  5405400 384  
168 16   13860 72   360360 192   5654880 384  
180 18 X  15120 80 X  393120 192   5765760 384  
240 20 X  18480 80   415800 192   6126120 384  
336 20   20160 84 X  443520 192   6320160 384  
360 24 X  25200 90 X  471240 192   6486480 400 X 
420 24   27720 96 X  480480 192   7207200 432 X 
480 24   30240 96   491400 192   8648640 448 X 
504 24   32760 96   498960 200 X  1081080

 
480 X 

540 24   36960 96   554400 216 X  1225224
 

480  
600 24   37800 96   655200 216   1297296

 
480  

630 24   40320 96   665280 224 X  1369368
 

480  
660 24   41580 96   720720 240 X  1413720

 
480  

Table 1. The first 132 highly divisorial-positive numbers. 

We see that σ0(𝑛𝑛) is non-decreasing in Table 1, which correlates with the fact that highly divisorial-positive 
numbers are largely composite. Different values of σ0(𝑛𝑛) are separated by horizontal lines in the table. For 𝑛𝑛 >
42, the number of rows between two such horizontal lines is given by OEIS sequence A308530, starting at the 
8th element. This sequence is defined as (𝑎𝑎𝑘𝑘), where 𝑎𝑎𝑘𝑘 is the number of largely composite numbers having the 
same number of divisors as the 𝑘𝑘th highly composite number. In the table, the visible part of the sequence is 1, 6, 
2, 1, 2, 9, 1, 2, 2, 2, 8, 1, 2, 3, 2, 1, 1, 9, 1, 1, 3, 2, 5, 2, 2, 2, 8, 1, 2, 1, 6, 3, 6, 2, 2, 1, 6, 1, 1, 1, 5. Each of the 
1’s in this sequence correspond to a single X-marked row in the table surrounded by two horizontal lines, the first 
being 𝑛𝑛 = 48, the next being 𝑛𝑛 = 180, and so on. The numbers in those rows are highly composite and their 
number of divisors is smaller than the number of divisors for any following largely composite number. They can 
be found in OEIS sequence A308531. 

Three highly composite numbers (the square numbers 1, 4, and 36) are missing in Table 1. It has been proved that 
these three numbers are the only highly composite numbers that are also square numbers (Ramanujan 1915).  

Now, let’s investigate the relationship between the functions σ0, 𝜋𝜋, and 𝜋𝜋∗ a bit further. It has been conjectured that 
the sequence of numbers whose product of (positive) divisors is larger than that of any smaller number 
(OEIS sequence A034287) is identical to the sequence of largely composite numbers (OEIS sequence A067128).12 
So, let us start with that. 

Theorem 3. Let 𝑛𝑛 be a positive integer. Then 𝑛𝑛 is largely composite if and only if 𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘) for all positive 
integers 𝑘𝑘 < 𝑛𝑛.13  

 
12  I do not know whether this conjecture has been formally stated earlier, but according to the comments section on OEIS sequences  
  A034287 and A067128, it is an open question. Furthermore, according to the same website, the identity has been verified for the first  
  105834 terms (all terms up to 10150). 
13  The denotation 𝜋𝜋(𝑛𝑛) means the product of all positive divisors of 𝑛𝑛 (see the Background section of this paper). 

https://oeis.org/A308530
https://oeis.org/A308531
https://oeis.org/A034287
https://oeis.org/A067128
https://oeis.org/A034287
https://oeis.org/A067128
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Proof outline. It is easy to see that 𝜋𝜋(𝑛𝑛)2 = |𝜋𝜋∗(𝑛𝑛)| = 𝑛𝑛σ0(𝑛𝑛) for all 𝑛𝑛 ∈ ℕ. When 𝑛𝑛 is divisorial-positive, we get 
𝜋𝜋(𝑛𝑛) = �𝜋𝜋∗(𝑛𝑛), and when 𝑛𝑛 is divisorial-negative, we get 𝜋𝜋(𝑛𝑛) = �−𝜋𝜋∗(𝑛𝑛). 

Let us first show that if n is largely composite, then 𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘) for all positive integers 𝑘𝑘 < 𝑛𝑛. Assume that n is largely 
composite. The only divisorial-negative numbers (thus, square numbers) that are also largely composite are 1, 4 and 36 
(Ramanujan 1915), and it is easily checked that 0 < 𝑘𝑘 < 𝑛𝑛 ⟺ 𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘) when 𝑛𝑛 is 1, 4 or 36. For all 𝑛𝑛 ∉ {1, 4, 36}, 
Theorem 1 tells us that 𝑛𝑛 is highly divisorial-positive. Thus, for all 𝑘𝑘 < 𝑛𝑛, we have 𝜋𝜋∗(𝑛𝑛) > 𝜋𝜋∗(𝑘𝑘). When k is divisorial-
positive, this means that �𝜋𝜋∗(𝑛𝑛) > �𝜋𝜋∗(𝑘𝑘) ⟹ 𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘). When it comes to all divisorial-negative 𝑘𝑘 < 𝑛𝑛, we know 
that σ0(𝑘𝑘) is odd. Since 𝑛𝑛 is largely composite, we know that σ0(𝑛𝑛) ≥ σ0(𝑘𝑘). Since σ0(𝑛𝑛) is even, σ0(𝑛𝑛) ≠ σ0(𝑘𝑘), so 
σ0(𝑛𝑛) > σ0(𝑘𝑘), and since 𝑛𝑛 > 𝑘𝑘 > 0, we get 𝑛𝑛σ0(𝑛𝑛) > 𝑘𝑘σ0(𝑘𝑘), so 𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘) for all divisorial-negative 𝑘𝑘 < 𝑛𝑛.  

Let us show that if 𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘) for all positive integers 𝑘𝑘 < 𝑛𝑛, then n is largely composite. Assume 𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘) for all positive 
integers 𝑘𝑘 < 𝑛𝑛. Since 𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘) > 0, we get 𝜋𝜋(𝑛𝑛)2 > 𝜋𝜋(𝑘𝑘)2 ⟺ |𝜋𝜋∗(𝑛𝑛)| > |𝜋𝜋∗(𝑘𝑘)|. Assume that 𝑛𝑛 is divisorial-positive. 
Then 𝜋𝜋∗(𝑛𝑛) = |𝜋𝜋∗(𝑛𝑛)| > |𝜋𝜋∗(𝑘𝑘)| ≥ 𝜋𝜋∗(𝑘𝑘), which means that 𝑛𝑛 is highly divisorial-positive, and then Theorem 2 tells us that 𝑛𝑛 
is largely composite (if 𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘) for all positive integers 𝑘𝑘 < 𝑛𝑛, then 𝑛𝑛 cannot be 5, 40 or 42, since 𝜋𝜋(4) > 𝜋𝜋(5), 𝜋𝜋(36) >
𝜋𝜋(40), and 𝜋𝜋(36) > 𝜋𝜋(42), so those three exceptions are irrelevant here). 

Now, assume that 𝑛𝑛 is divisorial-negative, i.e., 𝑛𝑛 is a square number. If 𝑛𝑛 is not highly divisorial-negative, then it is obvious that 
𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘) for all positive integers 𝑘𝑘 < 𝑛𝑛 cannot be true, since there exist a divisorial-negative number 𝑚𝑚 < 𝑛𝑛 such that 
𝜋𝜋∗(𝑚𝑚) ≤ 𝜋𝜋∗(𝑛𝑛) ⟹�−𝜋𝜋∗(𝑛𝑛) ≤ �−𝜋𝜋∗(𝑚𝑚) ⟹ 𝜋𝜋(𝑛𝑛) ≤ 𝜋𝜋(𝑚𝑚). Thus, 𝑛𝑛 must be highly divisorial-negative, so 𝜋𝜋∗(𝑛𝑛) < 𝜋𝜋∗(𝑘𝑘) for 
all 𝑘𝑘 < 𝑛𝑛. We need to prove that 𝜋𝜋(𝑛𝑛) > 𝜋𝜋(𝑘𝑘) for all positive integers 𝑘𝑘 < 𝑛𝑛 cannot be true when 𝑛𝑛 is highly divisorial-negative. 
Proving this last part is equivalent to proving Conjecture 1 below, and I leave that task to the reader, while referring to the 
reasoning presented in the proof of Theorem 2, and to Lemma 4. (∎) 

The concepts of divisorial-negative and divisorial-positive numbers might seem superfluous, since they are nothing 
more than square numbers and non-square numbers, respectively, and we don’t need more synonyms for those. But 
the highly divisorial-negative numbers (and perhaps the highly divisorial-positive numbers) might play an important 
role in future studies or come in handy as a tool in certain situations. Due to time constraints, I am unable to fully 
explore these possibilities. Consequently, I conclude this section with a conjecture. 

Conjecture 1. If 𝑛𝑛 is a highly divisorial-negative number (not 1, 4 or 36), then |𝜋𝜋∗(𝑛𝑛)| ≤ |𝜋𝜋∗(𝑚𝑚)| for some 𝑚𝑚 < 𝑛𝑛. 

The following lemma, together with the discussion above, might be useful in the proof, so it’s included here (even 
though it is rather trivial). 

Lemma 5. Let 𝑛𝑛 be a positive integer. Then σ0(𝑛𝑛) ≤ 2√𝑛𝑛. 
Proof. The positive divisors of 𝑛𝑛 occur in pairs {𝑑𝑑𝑖𝑖 ,

𝑛𝑛
𝑑𝑑𝑖𝑖

}, where 𝑑𝑑𝑖𝑖|𝑛𝑛, and 1 ≤ 𝑖𝑖 ≤ σ0(𝑛𝑛)
2

. The largest possible value of 𝑖𝑖 would 

generate the pair {√𝑛𝑛, 𝑛𝑛
√𝑛𝑛

}. Therefore, σ0(𝑛𝑛) ≤ 2√𝑛𝑛. ∎ 

3. An extended divisor product summatory function 
Let us now have a look at a new summatory function. I will denote it with the capital Greek letter 𝛲𝛲 (rho): 

𝛲𝛲(𝑛𝑛) = �𝜋𝜋∗(𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

 

which can, of course, also be written as 

𝛲𝛲(𝑛𝑛) = �(−𝑘𝑘)σ0(𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

 

The first values of this sequence is −1, 3, 12, −52, −27, 1269, 1318, 5414, 4685, 14685, 14806, 3000790, … 
(I got this approved as OEIS sequence A224914 some years ago). 𝑃𝑃(1), 𝑃𝑃(4), and 𝑃𝑃(5) are negative, and 
from there it continues with positive values until 𝛲𝛲(36) = −100792120241072. After 𝛲𝛲(36), the sequence is 
negative until we reach 𝛲𝛲(48) = 64840521809262990, and after this, 𝛲𝛲(𝑛𝑛) is, most likely, always positive. 
 
Conjecture 2. Define 𝛲𝛲(𝑛𝑛) as above. Then 𝛲𝛲(𝑛𝑛) > 0 for all 𝑛𝑛 > 47. 

When 𝑘𝑘 > 1 is a square number, 𝛲𝛲(𝑘𝑘) = 𝛲𝛲(𝑘𝑘 − 1) − 𝑘𝑘σ0(𝑘𝑘). When 𝑘𝑘 is non-square, 𝛲𝛲(𝑘𝑘) = 𝛲𝛲(𝑘𝑘 − 1) + 𝑘𝑘σ0(𝑘𝑘). 
When 𝑘𝑘 > 1 is a prime, we have 𝛲𝛲(𝑘𝑘) = 𝛲𝛲(𝑘𝑘 − 1) + 𝑘𝑘2. These are trivial identities. 

http://oeis.org/A224914
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Divisorial-positive numbers make the summatory function 𝛲𝛲 grow, and highly divisorial-positive numbers make it 
grow fast. This strongly indicates that Conjecture 2 is true, but it does not prove it, because on the other hand, the 
primes make 𝛲𝛲 grow much slower, and the divisorial-negative numbers make it shrink. The highly divisorial-negative 
numbers make it shrink quite a lot, such as 𝜋𝜋∗(14400) < −10260, but still, the negative values of 𝜋𝜋∗(𝑛𝑛) will 
(probably) never outweigh the positive, because as n increases, the distance between the negative terms in the sum 
Ρ(n) also increases. This gives rise to some interesting questions. Does ℕ have prime-dense regions with no or few 
largely composite numbers around square numbers with a very large number of divisors? And would this be enough 
to make 𝛲𝛲(𝑛𝑛) negative for some n in such regions? I am convinced that this is not the case, but my knowledge about 
the distribution of both primes and largely composite numbers are, so far, too limited to tackle the problem 
analytically. 

Conjecture 3. 𝛲𝛲(𝑛𝑛) > |𝜋𝜋∗(𝑛𝑛)| for all 𝑛𝑛 > 48. 

Conjecture 4. There exist a positive integer 𝑠𝑠, such that 𝛲𝛲(𝑛𝑛) ≥ |𝜋𝜋∗(𝑛𝑛)|2 for all 𝑛𝑛 > 𝑠𝑠. 

If Conjecture 3 is true, then obviously Conjecture 2 is true. I have checked it for 𝑛𝑛 ≤ 109 with the Python script 
given in Appendix A. This part might be updated in the next edition of this paper (see the next section).  

I find Conjecture 4 interesting. The first terms in the sequence of positive integers 𝑛𝑛, such that 𝛲𝛲(𝑛𝑛) < |𝜋𝜋∗(𝑛𝑛)|2 are 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, … (not yet submitted to OEIS). 
The sequence has 827 terms for 𝑛𝑛 < 10000, and it has 6710 terms for 𝑛𝑛 < 1000000.  

The first terms in the sequence of positive integers 𝑛𝑛, such that 𝛲𝛲(𝑛𝑛) ≥ |𝜋𝜋∗(𝑛𝑛)|2 are 11, 13, 17, 19, 23, 25, 29, 31, 
49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, … (not yet submitted to OEIS). 

Calculating the values in the 𝛲𝛲(𝑛𝑛) sequence requires a little bit of programming. As an example, 𝛲𝛲(20000) is 
2168489866725755264761185623571575807224769134715706592111461785349784984124287026
5607610834496468717990704106886952754798365916310358000565320307982514753855799487
6559326752265486754183873554497988961736189823222070024357131382811106227735988841
1262590613784776667067027154835485598377017612539310282549037387739134583575161922
56550376678878. 

I refer to Appendix A for the Python code used here. Appendix B contains a table of the first hundred values of 
𝛲𝛲(𝑛𝑛) with corresponding values of 𝑛𝑛, σ0(𝑛𝑛), and 𝜋𝜋∗(𝑛𝑛). 

4. About this paper 
This text is a result of an exploration of various number-theoretical concepts purely for recreational purposes. The 
content has not undergone peer review (nor has it been proofread), as I am currently not affiliated with any 
mathematical community. Consequently, it is reasonable to assume that I may have made a few mistakes. I hope 
that these mistakes are of minimal significance and do not overshadow the ideas presented here. 
I encourage my readers to reach out to me if they come across any irregularities in the text, and particularly if they 
can construct the missing proofs. My e-mail address is information@simonjensen.com. 

This version was published the 17th of June 2023 (with minor typos corrected 30th of April 2025) at my website 
www.simonjensen.com. I intend to complete the proofs for Theorem 2, Theorem 3, and the aforementioned 
conjectures, unless someone else manages to do so before me. The latest version of this paper will always be 
available at https://www.simonjensen.com/pdf/On_an_extended_divisor_product_summatory_function.pdf. 
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Appendix A 
Python code used to generate the tables and the various sequences mentioned in the paper: 

from math import isqrt 
from math import sqrt 
 
def create_positive_divisors(n): 
    global n_divisors 
    n_divisors = set() 
    for i in range(1, isqrt(n)+1): 
        if n % i == 0: 
            n_divisors.add(i) 
            n_divisors.add(n//i) 
    n_divisors = sorted(n_divisors) 
 
def get_number_of_positive_divisors(): 
    return len(n_divisors) 
 
def get_extended_divisor_product(n): 
    return (-n)**(get_number_of_positive_divisors()) 
 
def is_highly_divisorial_negative(): 
    global previous_minimum_extended_divisor_product 
    if n_extended_divisor_product < previous_minimum_extended_divisor_product: 
        previous_minimum_extended_divisor_product = n_extended_divisor_product 
        return True 
    return False 
 
def is_highly_divisorial_positive(): 
    global previous_maximum_extended_divisor_product 
    if n_extended_divisor_product > previous_maximum_extended_divisor_product: 
        previous_maximum_extended_divisor_product = n_extended_divisor_product 
        return True 
    return False 
 
# Input (maximum value of n in loop) 
limit=int(input("Limit: ")) 
 
# Initial values 
n_divisors = set() 
n_accumulated_divisor_product = 0 # Ρ(n) 
previous_HCN_number_of_positive_divisors = 0 # σ₀(m) for largest highly composite number m ≤ n in loop 
previous_minimum_extended_divisor_product = 0 
previous_maximum_extended_divisor_product = 0 
 
# Loop generating values for each n and accumulated values   
for n in range(1, limit + 1): 
    create_positive_divisors(n) 
    n_extended_divisor_product = get_extended_divisor_product(n) 
    n_number_of_positive_divisors = get_number_of_positive_divisors() 
    n_prime = True if n_number_of_positive_divisors == 2 else False 
    n_square = isqrt(n) == sqrt(n) 
    n_HCN = True if n_number_of_positive_divisors > previous_HCN_number_of_positive_divisors else False 
    n_HDP = is_highly_divisorial_positive() 
    n_HDN = is_highly_divisorial_negative() 
    if n_number_of_positive_divisors > previous_HCN_number_of_positive_divisors: 
        previous_HCN_number_of_positive_divisors = n_number_of_positive_divisors 
    n_accumulated_divisor_product += n_extended_divisor_product 
     
    # USEFUL VARIABLES AVAILABLE HERE (all these can be printed with the function print): 
    # limit                         = the maximum value of n (the loop runs from 1 to limit) 
    # n                             = 1, 2, ..., limit 
    # n_divisors                    = the set of all positive divisors of n 
    # n_number_of_positive_divisors = σ₀(n) 
    # n_extended_divisor_product    = π⁎(n) 
    # n_accumulated_divisor_product = Ρ(n) 
    # n_HCN                         = True when n is highly composite, else False 
    # n_HDP                         = True when n is highly divisorial-positive, else False 
    # n_HDN                         = True when n is highly divisorial-negative, else False 
    # n_square                      = True when n is a square number, else False 
    # n_prime                       = True when n a prime, else False 
     
    # Output (modify according to preferences) 
    if n_HCN: 
        print(f"n = {n}, σ₀(n) = {n_number_of_positive_divisors}, n is highly composite") 
    else: 
        print(f"n = {n}, σ₀(n) = {n_number_of_positive_divisors}, n is not highly composite ") 
    if n_accumulated_divisor_product < abs(n_extended_divisor_product): 
        print(f"n = {n}, P={n_accumulated_divisor_product}, Ρ(n) < |π⁎(n)|") 
             
print(f"\nDone.")  
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Appendix B 
Below are the first 100 values of 𝑛𝑛, σ0(𝑛𝑛), 𝜋𝜋∗(𝑛𝑛), and 𝛲𝛲(𝑛𝑛). Negative values are green. 

𝒏𝒏  𝛔𝛔𝟎𝟎(𝒏𝒏)  𝝅𝝅∗(𝒏𝒏)  𝜬𝜬(𝒏𝒏)  
1 1 -1 -1 
2 2 4 3 
3 2 9 12 
4 3 -64 -52 
5 2 25 -27 
6 4 1296 1269 
7 2 49 1318 
8 4 4096 5414 
9 3 -729 4685 
10 4 10000 14685 
11 2 121 14806 
12 6 2985984 3000790 
13 2 169 3000959 
14 4 38416 3039375 
15 4 50625 3090000 
16 5 -1048576 2041424 
17 2 289 2041713 
18 6 34012224 36053937 
19 2 361 36054298 
20 6 64000000 100054298 
21 4 194481 100248779 
22 4 234256 100483035 
23 2 529 100483564 
24 8 110075314176 110175797740 
25 3 -15625 110175782115 
26 4 456976 110176239091 
27 4 531441 110176770532 
28 6 481890304 110658660836 
29 2 841 110658661677 
30 8 656100000000 766758661677 
31 2 961 766758662638 
32 6 1073741824 767832404462 
33 4 1185921 767833590383 
34 4 1336336 767834926719 
35 4 1500625 767836427344 
36 9 -101559956668416 -100792120241072 
37 2 1369 -100792120239703 
38 4 2085136 -100792118154567 
39 4 2313441 -100792115841126 
40 8 6553600000000 -94238515841126 
41 2 1681 -94238515839445 
42 8 9682651996416 -84555863843029 
43 2 1849 -84555863841180 
44 6 7256313856 -84548607527324 
45 6 8303765625 -84540303761699 
46 4 4477456 -84540299284243 
47 2 2209 -84540299282034 
48 10 64925062108545024 64840521809262990 
49 3 -117649 64840521809145341 
50 6 15625000000 64840537434145341 
51 4 6765201 64840537440910542 
52 6 19770609664 64840557211520206 
53 2 2809 64840557211523015 
54 8 72301961339136 64912859172862151 
55 4 9150625 64912859182012776 
56 8 96717311574016 65009576493586792 
57 4 10556001 65009576504142793 
58 4 11316496 65009576515459289 
59 2 3481 65009576515462770 
60 12 2176782336000000000000 2176847345576515462770 
61 2 3721 2176847345576515466491 
62 4 14776336 2176847345576530242827 
63 6 62523502209 2176847345639053745036 
64 7 -4398046511104 2176847341241007233932 
65 4 17850625 2176847341241025084557 
66 8 360040606269696 2176847701281631354253 
67 2 4489 2176847701281631358742 
68 6 98867482624 2176847701380498841366 
69 4 22667121 2176847701380521508487 
70 8 576480100000000 2176848277860621508487 
71 2 5041 2176848277860621513528 
72 12 19408409961765342806016 21585258239625964319544 
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73 2 5329 21585258239625964324873 
74 4 29986576 21585258239625994311449 
75 6 177978515625 21585258239803972827074 
76 6 192699928576 21585258239996672755650 
77 4 35153041 21585258239996707908691 
78 8 1370114370683136 21585259610111078591827 
79 2 6241 21585259610111078598068 
80 10 10737418240000000000 21595997028351078598068 
81 5 -3486784401 21595997028347591813667 
82 4 45212176 21595997028347637025843 
83 2 6889 21595997028347637032732 
84 12 123410307017276135571456 145006304045623772604188 
85 4 52200625 145006304045623824804813 
86 4 54700816 145006304045623879505629 
87 4 57289761 145006304045623936795390 
88 8 3596345248055296 145006307641969184850686 
89 2 7921 145006307641969184858607 
90 12 282429536481000000000000 427435844122969184858607 
91 4 68574961 427435844122969253433568 
92 6 606355001344 427435844123575608434912 
93 4 74805201 427435844123575683240113 
94 4 78074896 427435844123575761315009 
95 4 81450625 427435844123575842765634 
96 12 612709757329767363772416 1040145601453343206538050 
97 2 9409 1040145601453343206547459 
98 6 885842380864 1040145601454229048928323 
99 6 941480149401 1040145601455170529077724 
100 9 -1000000000000000000 1040144601455170529077724 
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